02/10/14
15:16:51

CS 61B: Lecture 9
Monday, February 10, 2014

Today's reading: Sierra & Bates pp. 77, 235-239, 258-265, 663.

THE STACK AND THE HEAP

Java stores stuff in two separate pools of nmenory: the stack and the heap.

The _heap_ stores all objects, including all arrays, and all class variables
(i.e. those declared "static").

The _stack_ stores all local variables, including all paraneters.

When a nmethod is called, the Java Virtual Machine creates a _stack_frane_ (also
known as an _activation_record_) that stores the paranmeters and |ocal variables
for that method. One nethod can call another, which can call another, and so
on, so the JVYM maintains an internal _stack_ of stack frames, with "main" at
the bottom and the nost recent nethod call on top.

Here’s a snapshot of the stack while Java is executing the SList.insertEnd

met hod. The stack frames are on the left. Everything on the right half of the
page is in the heap. Read the stack frombottomto top, because that’'s the
order in which the stack frames were created.

STACK | HEAP
|
met hod cal | paranmeters & |l ocal variables |
.. |
o S
this | . +----------- >litem].| next |X
SLi st Node. SLi st Node | e e
obj |.H+-----mii i \ |
| |
-- | v v
| e
obj [.H+-----miiee e >l string |
| e
SLi st.insertEnd | n
this | 4--mommim i LSRR R \
| | |
-- | | |
| [|
Str | odmmmm e / v
e
list |.4----commmeiea--- >l head | X| size | 0|
U
SLi st. nain | eeeeeeeee e
args |.4---------miie e > .| .-+-> words |
- | e
| | e
—— | \---> input |

The method that is currently executing (at any point in time) is the one whose
stack frane is on top. Al the other stack frames represent nmethods waiting
for the nmethods above themto return before they can continue executing.

When a nethod finishes executing, its stack frane is erased fromthe top of the
stack, and its local variables are erased forever.

The java.lang library has a nethod "Thread. dunpStack” that prints a list of the
net hods on the stack (but it doesn’t print their local variables). This nethod
can be conveni ent for debuggi ng--for instance, when you're trying to figure out
whi ch nethod called another nethod with illegal paraneters.

09

Par anmet er Passi ng

As in Schene, Java passes all paraneters _by_value_. This neans that the
nethod has _copies_ of the actual paraneters, and cannot change the originals.
The copies reside in the nmethod's stack frame for the nethod. The nethod can
change these copies, but the original values that were copied are not changed.

In this exanple, the nmethod doNothing sets its parameter to 2, but it has no
effect on the value of the calling nmethod s variable a:
net hod: STACK (just before the nmethod returns)

|

static void doNothing(int x) { [
|
|

x = 2; x| 2]
3 stack frame for doNot hing
[== mmm e e e e ieiiiiiiiiiiiioan
nethod cal | : |
| _____
int a=1; | al| 1]
doNot hi ng(a); [stack franme for main
Wien the nethod call returns, ais still 1. The doNothing nethod, as its nane

suggests, failed to change the value of a or do anything relevant at all.

However, when a paraneter is a reference to an object, the reference is copied,
but the object is not; the original object is shared. A nmethod can nodify an
obj ect that one of its paranmeters points to, and the change will be visible
everywhere. Here's an exanple that shows how a nethod can nmake a change to an
object that is visible to the calling nethod:

et hod: | STACK | HEAP
| set 3|
class IntBox { | e |
public int i; | ib | -t \
static void set3(IntBox ib) { | e | |
ib.i =3 | | [
} [EERCEETEPPEPRERTEEES | v
| - I
met hod cal | : | b | .oteeemeeeeaaaan >|i]3]
[main ------

IntBox b = new I ntBox();
set 3(b);

For those of you who are famliar with programm ng | anguages that have "pass
by reference," the exanple above is as close as you can get in Java. But it's
not "pass by reference." Rather, it’'s passing a reference by val ue.

Here’s an exanpl e of a conmon progranming error, where a nethod tries and fails
to nake a change that is visible to the calling nethod. (Assune we’ve just
executed the exanple above, so b is set up.)

met hod: | STACK | HEAP

| badSet 4|

class IntBox { [| eee--

static void badSet4(IntBox ib) { | ib| -4 >l |4

ib = new IntBox(); [| -
ib.i =4 | |
} R R |

| - I

met hod cal | : | b | .-trmmmmmeeeeea >0 |3

| main ------

badSet 4(b) ;

02/10/14
15:16:51

Bi nary search

Wien a nethod calls itself recursively, the JVMs internal stack holds two or
nore stack franmes connected with that nethod. Only the top one can be
accessed.

Here’s a recursive nethod that searches a sorted array of ints for a particular
int. Let i be an array of ints sorted fromleast to greatest--for instance,
{-3, -2, 0, 0, 1, 5, 5}. W want to search the array for the value "findwe".
If we find "findMe", we return its array index; otherw se, we return FAI LURE.

We could sinply check every elenent of the array, but that would be slow

A better strategy is to check the middle array element first. |If findMe is
lesser, we know it can only be in the left half of the array; if findve is
greater, we know it can only be in the right half. Hence, we've elininated
hal f the possibilities with one conparison. W still have half the array to
check, so we recursively check the middle elenent of that half, and so on,
cutting the possibilites in half each time. Suppose we search for 1.

The recursion has two base cases.

(1) If findMe equals the niddle elenent, return its index; in the exanple
above, we return index 4.

(2) If we try to search a subarray of length zero, the array does not contain
"findMe", and we return FAI LURE.

public static final int FAILURE = -1,

private static int bsearch(int[] i, int left, int right, int findMe) {
if (left >right) {
return FAI LURE; /1 Base case 2: subarray of size zero.
}
int md = (left + right) / 2;
if (findve == i[nmid]) {
return md;
} elseif (findMe <i[md]) {
return bsearch(i, left, md - 1, findwe);

/1 Hal fway between left and right.
/| Base case 1: success!

/1 Search left half.

} else {
return bsearch(i, md + 1, right, findMWe); /'l Search right half.

}

}

public static int bsearch(int[] i, int findve) {
return bsearch(i, 0, i.length - 1, findMe);

}

How | ong does binary search take? Suppose the array has n elenents. In one

call to bsearch, we elimnate at |least half the elenents from consideration.
Hence, it takes 10og_2 n (the base 2 logarithmof n) bsearch calls to pare down

09

the possibilities to one. Binary search takes tine proportional to log_2 n.
If you' re not confortable with |ogarithms, please review Goodrich & Tamassi a
Sections 4.1.2 & 4.1.7.

STACK bsear ch left [4] |
right [4] findMe [1] |
md [4] P[] \
-------------------------------- | |
bsear ch left [4] | |
right [6] findve [1] | |
mid [5] O R |
-------------------------------- | !
bsear ch left [0] | |
right [6] findve [1] | |
mid [3] O |
-------------------------------- | !
bsearch findve [1] P[] | e
———————————————————————————————— | \--> -3-200155|
mai n args [.]-+>[] = ceeeeemeeeaoao--

| HEAP

The stack franes appear at right in the figure above. There are three
different local variables named "left" on the stack, three named "right", three

named "md", four named "i", and four naned "findMe". While the current
invocation of bsearch() is executing, only the topnost copy of "left" is in
scope, and |ikewise for "right" and "md". The other copies are hidden and

cannot be accessed or changed until the current invocation of bsearch()
term nates.

Mbst operating systems give a program enough stack space for a few thousand
stack frames. |f you use a recursive procedure to wal k through a mllion-node
list, Java will try to create a mllion stack frames, and the stack wl|l

run out of space. The result is a run-time error. You should use iteration
instead of recursion when the recursion will be very deep.

However, our recursive binary search nethod does not have this problem Most
nodern mi croprocessors cannot address nore than 2764 bytes of menory. Even if
an array of bytes takes this rmuch space, we will only have to cut the array in
half 64 times to run a binary search. There's roomon the stack for 64 stack
franes, with plenty to spare. 1In general, recursion to a depth of roughly

log n (where n is the nunber of items in a data structure) is safe, whereas
recursion to a depth of roughly n is not.

Unfortunately, binary search can’t be used on linked lists. Think about why.

Scope and Recursion
The _scope_ of a variable is the portion of the programthat can access the
variable. Here are sone of Java's scoping rules.

- Local variables and paraneters are in scope only inside the nethod that
declares them and only for the topnost stack frame. Furthernore, a |ocal
variable is in scope only fromthe variable declaration down to the innernost
closing brace that encloses it. A local variable declared in the
initialization part of a "for" loop is in scope only in the |oop body.

- Cass variables (static fields) are in scope everywhere in the class, except
when shadowed by a | ocal variable or paraneter of the same name.

- Fully qualified class variables ("Systemout", rather than "out") are in
scope everywhere in the class, and cannot be shadowed. |f they’'re public,
they're in scope in _all_ classes.

- Instance variables (non-static fields) are in scope in non-static methods of
the class, except when shadowed.

- Fully qualified instance variables ("amanda.nanme", "this.i") are in scope
everywhere in the class, and cannot be shadowed. |If they're public, they're
in scope in all classes.

