02/03/14
03:51:12

CS 61B: Lecture 7
Wednesday, February 5, 2014

Today's reading: GCoodrich & Tamassia, Section 3.2.

Let’s consider two different data structures for storing a list of things:
an array and a linked list.

An array is a pretty obvious way to store a list, with a big advantage: it
enabl es very fast access of each item However, it has two di sadvantages.

First, if we want to insert an itemat the beginning or nmddle of an array, we
have to slide a lot of itens over one place to make room This takes tine
proportional to the length of the array.

Second, an array has a fixed length that can’'t be changed. |f we want to add
items to the list, but the array is full, we have to allocate a whol e new array
and nove all the ints fromthe old array to the new one.

public class AList {
int a[];
int lastltem

public AList() {
a = new int[10];
lastltem= -1;

/1 The nunber "10" is arbitrary.

}
public void insertlten(int newltem int |ocation) {
int i;
if (lastltem+ 1 == a.length) { /1 No roomleft in the array?
int b[] = newint[2 * a.length]; // Allocate a new array, twi ce as |ong.
for (i =0; i <=lastltem i++) { /1 Copy itens to the bigger array.
b[i] = a[i];
}
a = b; /1 Replace the too-small array with the new one.
}
for (i =lastltem i >= location; i--) { /1 Shift items to the right.

a[i + 1] = a[i];

a[l ocation] = newtem
| ast|temt+;

}

07

LI NKED LI STS (a recursive data type)

We can avoid these problens by choosing a Schene-like representation of lists.

Alinked list is nade up of _nodes_. Each node has two conponents: an item
and a reference to the next node in the list. These conponents are anal ogous
to "car" and "cdr". However, our node is an explicitly defined object.

public class ListNode { /1 ListNode is a recursive type
public int item
public ListNode next; /1 Here we’re using ListNode before

} 11 we’ ve finished declaring it.

Let’ s nmake sonme Li st Nodes.

Li stNode 11 = new ListNode(), 12 = new ListNode(), |3 = new Li st Node();
ll.item=7;
|2.item= 0;
|13.item= 6;
| | | e | | e |
| item 7] | | item O] | | item 6] |
11--> ----- | 12--> ----- | 13--> - |
[| [| [
| next| ? | | | next| ? | | | next| ? | |

What about the last node? W need a reference that doesn’t reference anything.
In Java, this is called "null".

13.next = null;

To sinplify programming, let’'s add sone constructors to the ListNode class.
public ListNode(int i, ListNode n) {

item=1i;

next = n;

}

public ListNode(int i) {
this(i, null);
}

These constructors allow us to emul ate Schenme’s "cons" operation.

Li st Node |1 = new ListNode(7, new ListNode(0, new ListNode(6)));

02/03/14
03:51:12

Linked lists vs. array lists

Linked |ists have several advantages over array-based lists. |Inserting an item
into the middle of a linked Iist takes just a small constant anount of tine, if
you already have a reference to the previous node (and don't have to wal k
through the whole list searching for it). The list can keep growi ng until
menory runs out.

The followi ng method inserts a newiteminto the list imediately after "this".

public void insertAfter(int item {
next = new ListNode(item next);

}
I2.insertAfter(3);

| | |
| itenf 7] | | itenf O] |

|
|
11--> ----- | 12--> ----- | T | 13--> - |
----- | IR R IR | -
| next| .-4-4------ > next| .-+-+-->| next| .-+-+------ > next| X | |
IEREEEEE | IEREEEEE I | IERNEEEEE |
However, linked |lists have a big di sadvantage conpared to arrays. Finding the

nth itemof an array takes a tiny, constant ampbunt of time. Finding the nth
itemof a linked list takes tinme proportional to n. You have to start at the
head of the list and walk forward n - 1 nodes, one "next" at a tine.

Many of the data structures we will study in this class will be attenpts to
find a conprom se between arrays and linked lists. W'l learn data structures
that are fast for both arbitrary | ookups (like arrays) _and_ arbitrary
insertions (like linked lists).

Lists of Objects

For greater generality, let’'s change ListNodes so that each node contains not
an int, but a reference to any Java object. In Java, we can acconplish this by
declaring a reference of type Object.

public class SListNode {
public Object item
public SLi st Node next;

}
The "S" in "SListNode" stands for singly-linked. This will make sense when we
contrast these lists with doubly-linked lists later. You'll see the SListNode

class in next week’s |l ab and homewor k.

07

A List dass

There are two problens with SListNodes.

(1) Suppose x and y are pointers to the sane shopping list. Suppose we insert
a new itemat the beginning of the list thusly:

X = new SLi st Node("soap", Xx);

y doesn’t point to the newitem y still points to the second itemin x’s
list. |If y goes shopping for x, he'll forget to buy soap.

(2) How do you represent an enpty list? The obvious way is "x = null".
However, Java won't |et you call a SListNode nmethod--or any nethod--on

a null object. |If you wite "x.insertAfter(item" when x is null, you'll
get a run-time error, even though x is declared to be a SLi st Node.
(There are good reasons for this, which you' Il learn later in the course.)

The solution is a separate SList class, whose job is to maintain the head
(first node) of the list. We will put many of the nmethods that operate on
lists in the SList class, rather than the SLi st Node cl ass.

public class SList {
private SListNode head; /!l First node in list.
private int size; /1 Nunmber of itens in list.

public SList() {
head nul | ;
si ze 0;

/'l Here's how to represent an enpty list.

}

public void insertFront(Object item {
head = new SLi st Node(item head);

Si ze++;
}
}
SLi st obj ect SLi st Node obj ect
—————————————————————————— String object
----- | e | | e |
X | L oA----- > size|] 1] | | iten] .-+-+----> nilk |
----- ! e ! e
----- | e | |
y | -4 > head| .-+-H+-------iiiiaai >l next| X | |
|

Now, when you call x.insertFront("fish"), every reference to that SList can see
t he change.

SLi st SLi st Node SLi st Node
---------- | R INPEEEEEE Rl BN
X | .-+-->| size| 2| | | item .-+-+->| fish | | item .-+-+-> nilk |
----- | e b e R e
---------- | SREE | SR
y | .-+-> head| .-+-+-->] next| .-+-4----------- > next| X | |
| |

Anot her advantage of the SList class is that it can keep a record of the
SList’s size (nunber of SListNodes). Hence, the size can be determined nore
quickly than if the SListNodes had to be counted.

