01/27/14
15:11:54

CS 61B: Lecture 3
Monday, January 27, 2014

Today's reading: Sierra & Bates, pp. 71-74, 76, 85, 240-249, 273-281, 308-309.

DEFI NI NG CLASSES

An object is a repository of data. _Fields_ are variables that hold the data
stored in objects. Fields in objects are also known as _instance_variables_.
In Java, fields are addressed nuch |ike nethods are, but fields never have
parameters, and no parentheses appear after them For exanple, suppose that
amanda is a Human object. Then ananda.introduce() is a nethod call, and
amanda. age is a field. Let’'s wite a _class_definition_ for the Human cl ass.

class Human {
public int age;
public String nane;

/1 The Human's age (an integer).
/1 The Human’s nane.

public void introduce() {
Systemout.println("l’'m

/1 This is a _method_definition_.
+ name + " and I'm" + age + years old.");

}

"age" and "name" are both fields of a Human object. Now that we’ve defined the
Human cl ass, we can construct as many Human objects as we want. Each Human

obj ect we create can have different values of age and nane. W night create
amanda by executing the follow ng code.

Human amanda =
amanda. age = 6;
anmanda. nane = "Amanda";
amanda. i ntroduce();

new Human(); /] Create amanda.
/1 Set amanda’s fields.

/1 _Method_cal | _ has anmanda introduce herself.

| -

| age | 6] |
amanda | . +--->| ----]
| name | -+--+----> "Amanda" |

a Human obj ect

The output is: I”’m Amanda and |'m 6 years ol d.

Wiy is it that, inside the definition of introduce(), we don't have to wite
"amanda. name" and "amanda. age"? Wen we invoke "amanda.introduce()", Java
renmenbers that we are calling introduce() _on_ the object that "amanda"
references. The methods defined inside the Hunan cl ass renember that we're
referring to amanda’s nanme and age. |If we had witten "rishi.introduce()", the
introduce nmethod would print rishi’s name and age instead. |f we want to mx
two or nore objects, we can.

class Human {
/1 Include all the stuff fromthe previous definition of Human here.

public void copy(Human original) {
age = original.age;
name = original.nane;
}
}

Now, "amanda.copy(rishi)" copies rishi’s fields to amanda.

03

Constructors

Let’s wite a constructor, a nethod that constructs a Human. The constructor
won’'t actually contain code that does the creating; rather, Java provides a
brand new object for us right at the beginning of the constructor, and all you
have to write (if you want) in the constructor is code to initialize the new
obj ect .

class Human {
/1 Include all the stuff fromthe previous definitions here.

public Human(String gi venNane) {

age = 6;
name = gi venNane;
}
}
Notice that the constructor is named "Human", and it returns an object of type
"Human". This constructor is called whenever we wite "new Human(s)", where s

is a String reference. Now, we can shorten amanda’s comi ng-out party to

Human amanda = new Human(" Ananda");
amanda. i ntroduce();

These lines acconplish precisely the same result as ananda’ s previous four
l'i nes.

You mi ght ask...why were we able to create a Human obj ect before we wote a
constructor? Java provides every class with a default constructor, which takes
no paraneters and does no initializing. Hence, when we wote

Human amanda = new Human();

we created a new, blank Human. |If the default constructor were explicitly
witten, it would look like this:

public Human() {

}
Warning: if you wite your own Human constructor, even if it takes paraneters,
the default constructor goes away. If you want to have the default constructor

and anot her constructor, you nust define both explicitly.

You can override the default constructor by explicitly witing your own
constructor with no parameters.

class Human {
/1 Include all the stuff fromthe previous definitions here.

public Human() {
age = 0;
name = "Untitled";
}
}

01/27/14
15:11:54

The "this" Keyword

A nethod invocation, like "anmanda.introduce()", inplicitly passes an object
(in this exanple, ananda) as a paraneter called "this". So we can rewite our
| ast constructor as follows w thout changing its neaning.

public Human() {

this.age = 0;
this.name = "Untitled";
}
In this case, "this" is optional. However, if the paraneters or |ocal

vari abl es of a nethod have the sane nane as the fields of an object, then the
former have priority, and the "this" keyword is needed to refer to the object’s
fields.

public void change(int age) {
String name = "Tont';

this.age = age;
this. nanme = nane;

}

Wien we call "anmanda.change(11)", "this" is assigned the sane value as "ananda"
before the change() nethod begins execution.

Paraneters & | ocal variables
of change()
amanda | . +--->| EEE T

| age | 6] |<--------------------- +- | this age | 11]
| name | -+--+----> Amanda | e T
| e | e nane | -+----> Tom |

Now, when Java executes "this.age = age", it overwites the 6 with an 11.
When Java executes "this.nanme = nane", it overwites amanda’ s nane as bel ow.

Paraneters & | ocal variables
of change()

amanda | . +--->|
| age |11] |<--------------------- +- | this age | 11]
| name | -+--+--\ | Amanda |
| B N R nane | -+---->---------
-------------- | | Tom |
| - Semmmmmaaa

A staterment like "this = amanda;" will trigger a conpile-tine error.

03

The "static" Keyword

A _static_field_is a single variable shared by a whole class of objects; its
val ue does not vary fromobject to object. For exanple, if "nunberOf Hunans" is
the nunber of Human objects that have been constructed, it is not appropriate
for each object to have its own copy of this nunber; every tine a new Hunan is
created, we woul d have to update every Human.

If we declare a field "static", there is just one field for the whole class.
Static fields are also called _class_variables_.

cl ass Human {
public static int nunber Of Humans;

public int age;
public String nane;

public Human() {
nunber Of Humans++;

}

/1 The constructor increments the nunber by one.

}

If we want to | ook at the variable nunber Of Humans from another class, we wite
it in the usual notation, but we prefix it with the class nane rather than the
nane of a specific object.

int kids = Human. nunber O Humans / 4; // Good.

int kids = amanda. nunber Of Humans / 4; // This works too, but has nothing to
/1 do with amanda specifically. Don't
/1 do this; it's bad (confusing) style.

Systemin and Systemout are other exanples of static fields.

Met hods can be static too. A _static_nmethod_ doesn’t inplicitly pass an object
as a paraneter.

class Human {

public static void printHumans() {
System out . print| n(nunber O Hurmrans) ;
}
}

Now, we can call "Human.printHumans()" from another class. W can also call
"amanda. printHumans()", and it works, but it’s bad style, and amanda will NOT
be passed along as "this".

The nmain() nethod is always static, because when we run a program we are not
passing an object in.

Any attenpt to reference "this" will cause a conpile-time error.

Lifetines of Variables

- Alocal variable (declared in a nethod) is gone forever as soon as the nethod
in which it’s declared finishes executing. (If it references an object, the
obj ect m ght continue to exist, though.)

- An instance variable (non-static field) lasts as long as the object exists.
An object lasts as long as there’'s a reference to it.

- Aclass variable (static field) lasts as long as the programruns.

