04/30/14
22:51:28

CS 61B Homework 10
Due noon Wednesday, May 7, 2014

This homework will give you practice implementing linear-time sorting
algorithms. This is an individual assignment; you may not share code with
other students.

Copy the Homework 10 directory by doing the following, starting from your home
directory.

cp -r "cs61b/hw/hw10 .

Your job is to implement counting sort and radix sort for arrays of ints. All
your code should appear in the file sort/Sorts.java. A skeleton is provided
for you.

Part | (8 points)

Implement counting sort on int arrays.
public static int[] countingSort(int[] keys, int whichDigit);

The most important difference between the counting sort you will implement here
and the one presented in lecture is that this counting sort uses one base-16

digit in each int as its sort key, and ignores all the other digits. That way,

your counting sort can be used as one pass of radix sort. (Make sure that your
counting sort is stable!)

The parameter "whichDigit" tells the method which base-16 digit of each int to
use as a sort key. If whichDigit is zero, sort on the least significant (ones)
digit; if whichDigit is one, sort on the second least significant (sixteens)

digit; and so on. An int is 32 bits long, so it has eight digits of four bits

each.

The high bit of each int is a sign bit. To keep life simple, we will assume
that all the numbers are positive, so the high bit is always zero. Don't try
to create an int whose most significant base-16 digit is greater than 7.

Hexadecimal Primer: Hexadecimal is a way of expressing a number in base-16.
We use the usual digits 0...9, plus the additional digits a...f to represent

ten through fifteen. You can convert back and forth between an int and

a hexadecimal string by using the Integer.toString(int, int) and
Integer.parselnt(String, int) methods. (Look them up in the online Java API,
and/or look at how they are used in Sorts.java.) You won't use these for
sorting, but they're useful for getting numbers in and out of the algorithm in

a human-readable format.

One of the best reasons to use base-16 digits in radix sort is because they can
be extracted very quickly from a key by using bit operations. This means that,
in your countingSort method, you should use bit operations to extract the
digits, and not throw away the speed advantage by using something silly like
toString() to extract each digit. The bit operation that will serve you best

is Java’'s "&" operator. If you write "x & 15", it masks the int x against the

bit pattern "0000...00001111", so only the least significant base-16 digit
survives, and the others are set to zero. This allows you to extract the least
significant digit.

Want to extract a different digit? Divide the int by some appropriate divisor
first. Recall that integer division always rounds down (toward zero), so you
can eliminate low-order digits this way if you choose the right divisor. This
moves the digit you're looking for down to the least significant position, so
you can mask it against a 15. (For faster performance, shift the bits to the
right, if you know how to do so.)

readme

Warning: Do not confuse & with &&. && will not do bit masking.

Part Il (2 points)
Implement radix sort on int arrays. Your radix sort should use your counting
sort to do each pass.

public static int[] radixSort(int[] keys);

A small test is provided in Sorts.main, which you can run by typing
"java sort.Sorts". We recommend you add more test code of your own.
Your main method and other test code will not be graded.

Submitting your solution
Make sure your methods countingSort and radixSort do NOT print anything to the
screen! (Your main method can print anything it likes.)

Change (cd) to your hw10 directory, which should contain the sort directory.
The sort directory should contain Sorts.java. Make sure your homework compiles
and runs on the _lab_ machines just before you submit.

From your hw10 directory, type "submit hw10". (Note that "submit" will not
work if you are inside the sort directory!) After submitting, if you realize
your solution is flawed, you may fix it and submit again. You may submit as
often as you like. Only the last version you submit before the deadline will
be graded.



