$$
\begin{gathered}
\text { CS 61B Lab } 9 \\
\text { April } 2-3,2013
\end{gathered}
$$

Goal: to practice proving asymptotic (big-Oh) results. The class notes from Lecture 20 may come in handy; however, we will try to be even more rigorous here than in lecture.

Recall the definition of big-Oh:

```
O(f(n)) is the SET of ALL functions T(n) that satisfy:
    There exist positive constants c and N such that, for all n >= N,
```

 \(\mathrm{T}(\mathrm{n})<=\mathrm{c} f(\mathrm{n})\)

EXAMPLE

Formally prove that $n^{\wedge} 2+n+1$ is in $O\left(n^{\wedge} 2\right)$.
Solution:
Let $T(n)=n^{\wedge} 2+n+1$. Let $f(n)=n^{\wedge} 2$.
Choose $c=3$, and $N=1$. Then, we know $T(n)$ is in $O\left(n^{\wedge} 2\right)$ if we can prove

$$
\text { or equivalently, } \quad n^{\wedge} 2+n+1<r(n)<=c(n),
$$

$$
\text { for all } \mathrm{n}>=1 .
$$

Is this inequality true? Well, for any $n>=1$, we know that $1<=n<=n \wedge 2$. Hence, all of the following are true:

$$
\begin{aligned}
1 & <=n^{\wedge} 2 \\
n & <=n^{\wedge} 2 \\
n^{\wedge} 2 & =n^{\wedge} 2
\end{aligned}
$$

Adding the left and right sides of these inequalities together, we have

$$
\mathrm{n}^{\wedge} 2+\mathrm{n}+1<=3 \mathrm{n} \wedge 2 \text {, which completes the proof. }
$$

Part I: (1 point)

Formally prove that $2^{\wedge} n+1$ is in $O(4 \wedge n-16)$.
HINT: You may assert without proof that, for all $n>=1,2^{\wedge} n>=1$.
(You may also assert without proof that $4 \wedge n$ and $2^{\wedge} n$ are monotonically increasing, if you find it useful.)
Part II: (1 point)
Formally prove that if $f(n)$ is in $O(g(n))$, and $g(n)$ is in $O(h(n))$, then $\mathrm{f}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{h}(\mathrm{n}))$.
NOTE: The values of c and N used to prove that $f(n)$ is in $O(g(n))$ are not necessarily the same as the values used to prove that $g(n)$ is in $O(h(n))$. Hence, assume that there are positive $\mathrm{C}^{\prime}, \mathrm{N}^{\prime}, \mathrm{c}^{\prime \prime}$, and N^{\prime} ' such that

$$
\begin{array}{ll}
f(n)<=c^{\prime} g(n) & \text { for all } n>=N^{\prime}, \text { and } \\
g(n)<=c^{\prime} h(n) & \text { for all } n>=N^{\prime}, .
\end{array}
$$

Part III: (2 points)

Formally prove that $0.01 \mathrm{n}^{\wedge} 2-1$ is NOT in $O(n)$.
We need to show that, no matter how large we choose c and N , we will never obtain the desired inequality. We cannot prove this by picking a specific value of c and N. Instead, we must study how the two functions behave as n approaches infinity.

Let $T(n)=0.01 n^{\wedge} 2-1$, and let $f(n)=n$. Prove that

$$
\lim _{\mathrm{n}->\text { infinity }} \frac{\mathrm{cf} \mathrm{f}(\mathrm{n})}{\mathrm{T}(\mathrm{n})}=0 \text {, }
$$

no matter how large we choose c to be. You will need to scale both the numerator and the denominator by a well-chosen multiplier to get the result

Use this result to show that there are no values c, N such that $T(n)<=c f(n)$ for all n >= N .

Postscript
The functions $|\cos (\mathrm{n})|$ and $|\sin (\mathrm{n})|$ are interesting, because neither is dominated by the other. Can you informally suggest why $|\cos (\mathrm{n})|$ is not in $O(|\sin (n)|)$, and $|\sin (n)|$ is not in $O(|\cos (n)|)$?

How would you prove that, for all $\mathrm{n}>=1,2^{\wedge} \mathrm{n}>=1$? (Hint: use calculus.)

