04/19/13
23:24:59

CS 61B Lab 12
April 23-24, 2013

Goal: This lab wil introduce you to several sorting algorithms and allow you
to compare their running times in practice.

Copy the Lab 12 directory by starting from your home directory and typing:
cp -r "cs6lb/labl/labl2 .

Part I: Identifying Sort Algorithms (1 point)

To help build your intuition of how these sorting algorithms work, take a look
at three algorithms in action. Run a web browser and go to the Web page

http://www.cs.berkeley.edu/ jrs/61b/lab/MysterySort

Each histogram shown illustrates an array of ints. The height of each bar is
proportional to the integer stored at that position in the array. When you
click on a histogram, an animated algorithm sorts the array.

The histograms are numbered 1, 2, 3, and 4, each humber corresponding to a
different sorting algorithm you have seen in class. Identify each algorithm.
How can you tell which is which? Which is fastest on the random data? What
about the presorted data and the reverse sorted data?

One of the algorithms is quicksort. Which element does it choose for the pivot
in a partition? (The pivot is not randomly chosen.) How can you tell?

Part Il: Timing Sort Algorithms (2 points)

Part | gave you a rough idea of the relative speeds of the three sorting
algorithms. For greater accuracy, we will now time several algorithms.

SortPerf.java runs a sorting algorithm (chosen from a selection of several) on
a randomly generated array of specified size, and outputs the data to a file.
Compile and run SortPerf.

javac -g SortPerf.java

java SortPerf select 5 175 200 select.dat
The first argument is the sorting algorithm ("select”, "merge", "insert", or
"quick"). The second is both the size of the smallest array to sort and the
increment between array sizes. The third is the size of the largest array to
sort. The fourth is the number of trials for each size of array. Because
timings are easily perturbed by other processes running on the same
workstation, you must run each test for a few hundred trials to get accurate
timings. The last argument is the name of the file in which SortPerf reports
the total running time, in milliseconds, of all trials for each array size.

The sample command above runs selection sort on arrays of size 5, 10, 15, ...,
175, each 200 times, placing the timing results in the file select.dat. If you
notice that the timings look a little bumpy, i.e., the running time does not
appear to be strictly increasing with input size, try running SortPerf several
times until you get a fairly smooth set of numbers. When SortPerf is running,
be careful not to touch the mouse or keyboard, as any user input increases the
running time.

Now run SortPerf for the same sizes using mergesort, insertion sort, and
quicksort. Save these data to different files--say, merge.dat, insert.dat, and
quick.dat. To make this easier, we have also provided a file called runrace,
which you can execute to run all four sorting algorithms. Read runrace to see
how it works.

Use the program "gnuplot” to plot the timing results. At the prompt in an

readme

xterm (not emacs), type
gnuplot
You will see a ">" prompt. Plot the files using a command like

gnuplot> plot "select.dat" with linesp 1, "merge.dat" with linesp 2,
"insert.dat" with linesp 3, "quick.dat" with linesp 4

[Type all this on just one line, though.]

You should observe that the algorithms behave asymptotically as expected, but
it is unclear which algorithm is faster for small array sizes. At what values

of n do you observe cross-overs in execution time between the three sorting
algorithms? To help see these cross-overs better, edit the runrace file to use
the command

java SortPerf <sort> 1 50 1000 <sort>.dat
for each sorting algorithm. This gives a clearer picture of what happens for
array sizes less than 50. Again run the script and plot the results with
gnuplot.

PART Ill: Building a Better Sort (1 point)

Based on your observations in Part Il, write a sorting algorithm that works
well on the random data for all sizes of n. It won’t be a completely new
sorting algorithm, but should combine the sorting algorithms described here in
a very simple way. Implement your solution in YourSort.java. Run your
algorithm from SortPerf by calling the sorting method "best". Modify runrace
to generate timings for your new algorithm, and plot the results.

Check-off

1 point: What are sorting algorithms 1, 2, and 3 in Part I? How do you know?
How is the pivot element chosen? How do you know?

3 points: Show the plotted performance of the sorting algorithms. The third
point is for including your algorithm in the plot, and demonstrating
that it's roughly as good as any of the others for any array size.



