04/19/13
22:05:51

CS 61B Honmework 9
Due 5:30 pm Friday, April 26, 2013

Part | (8 points)

Edit the file Maze.java and conplete the inplenmentation of the Maze
constructor. Use our disjoint sets data structure to create a random
rectangul ar maze. Your random nmazes should have two properties: there is a
path fromany given cell to any other cell, and there are no cycles (loops)--
in other words, there is _only_ one path fromany given cell to any other cell.

Each maze is an h-by-v grid of square cells (where h is the nunber of cells in
the horizontal direction, and v is the nunber of cells in the vertical
direction). The cell in the upper left corner is nunbered (0, 0). The cell to
its right is nunbered (1, 0). The cell below the upper left cell is nunbered
(0, 1).

There are vertical walls and horizontal walls separating adjacent cells. Each
interior horizontal wall has the same nunbering as the cell inmmediately above
it. Each interior vertical wall has the sane nunbering as the cell to its
imediate left. Hence, horizontal wall (i, j) separates cell (i, j) fromcell
(i, j +1), and vertical wall (i, j) separates cell (i, j) fromcell

(i +1, j). Here is a depiction of a 6-by-3 grid.

[[[[
(0,0) (0,0) (1,0) (1,0) (2,0) (2,0) (3,0) (3,0) (4,0) (4,0) (5,0)
I I I I I

| | | | |
---(0,0)---+---(1,0)---+--(2,0)---+--(3,0)---+--(4,0)---+--(5,0)---
[[[[[

[[[[[
(0,1) (0,1) (1,1) (1,1) (2,1) (2,1) (3,1) (3,1) (41) (4,1) (51)
I I I I I

| | | | |
co (0, 1) Ao (1, 1) e b= (2, 1) b o (3, L) m - m e (4, 1) - H-- (5, 1) - --
| | | | |

[

|

|

[

|

+

[

|

|

[

|

+

| | | | | :

(0,2) (0i2) (1,2) (1i2) (2,2) (2,2) (3,2) (3i2) (4,2) (4i2) (5,2) I
|
+

[
|
|
[
|
+
[
|
|
[
|
+
[
|
|
[
|
+

Observe that there is an h-by-(v-1) set of horizontal walls, and an (h-1)-by-v
set of vertical walls. In your maze, sone of these walls will be present and
some will be missing. The walls present are indicated by the arrays hWalls and
v\Wal I's, which are an h-by-(v-1) bool ean array and an (h-1)-by-v bool ean array,
respectively. (Exterior walls are nunbered according to the sane system but
there is no explicit storage for them because they are presuned to al ways be
present.)

The Maze constructor currently creates a "maze" in which every possible wall is
present. To neke a proper maze, you will need to elinmnate walls selectively.
Do so as follows.

(1) Create a disjoint sets data structure in which each cell of the maze is
represented as a separate item Use the DisjointSets class (described in
the Lecture 33 notes), which is in the set package we’ve provided.

(2) Oder the interior walls of the maze in a random order.
One way to do this is to create an array in which every wall (horizontal

and vertical) is represented. (How you represent each wall is up to
you.) Scranble the walls by reodering theminto a random pernutati on.

readme

Each possi bl e pernutation (ordering) of walls should be equally Ilikely.

Here’s how to do that. Put all the walls into the array. The ideais to
random y choose (fromall the walls) the wall that will be at the end of
the array. Swap it to the end, then never nove it again. Fromthe
remaining wal l's, choose the wall that will cone second-last. Swap it to
its final position, then never nove it again. Repeat until you' ve chosen
a wall for each slot in the array.

Here’s an algorithm c rephrasing of what | just said. Mintain a counter
w, initially set to the nunber of walls. Iterate the follow ng procedure:
select one of the first wwalls in the array at random and swap it with

the wth wall in the array (at index w- 1). This pernanently establishes
the randomy chosen wall as the wth wall. Then decrease w by one. Repeat
this operation until wis one.

(3) Visit the walls in the (random) order in which they appear in the array.
For each wall you visit:

(i) Determine which cell is on each side of the wall.

(ii) Determine whether these two cells are nenbers of the sane set
in the disjoint sets data structure. |f they are, then there is
already a path between them so you nust |leave the wall intact to

avoid creating a cycle.

(iii) If the cells are nenbers of different sets, elimnate the wall
separating them (thereby creating a path fromany cell in one
set to any cell in the other) by setting the appropriate el ement
of hWalls or vWalls to false. Formthe union of the two sets in
the disjoint sets data structure.

Wien you have visited every wall once, you have a finished naze!

Be forewarned that the DisjointSets class has no error checking, and will fail
catastrophically if you union() vertices that are not roots of their respective
sets, or if you union() a set with itself. You may want to add error checking
to DisjointSets.java to help you find your bugs, and/or augnent union() so it
always calls find() on both inputs first. This error checking can help you
with Project 3 as well.

Al the other nethods you need, including test nethods, are provided for you.

toString() converts the maze to a string so you can print it.

randlnt (c) generates a random nunber fromO to ¢ - 1, and is provided to
help you wite the Maze() constructor. To keep the mazes interesting, it
generates a different sequence of random nunbers each tine you run the
program

di agnose() tests your maze for cycles or unreachable cells using depth-first
search. DON T CHANGE IT. YOUR CODE MUST WORK WTH _OUR_ COPY OF TH S
METHOD.

mai n() generates a naze (using your constructor), prints it, and tests it.

di agnose() depends on the follow ng two nethods, so don’t make changes that
will prevent these from working:

hori zontal VAl | (x, y) determ nes whether a horizontal wall is intact.
vertical Val | (x, y) determi nes whether a vertical wall is intact.

You may see how you’re doing by conpiling and running Maze.java. To |look at a
30 x 10 maze, run:

java Maze 30 10

The default dinmensions, if you don't specify any on the conmand line, are
39 x 15.

04/19/13
22:05:51

Part Il (2 points)

You have probably noticed the similarity between your maze and a graph data
structure. Think of the cells of the maze as vertices of a graph. Two

adj acent cells are connected by an edge if there is no wall separating them
Qur di agnose() nethod uses depth-first search to test that your nmaze is a tree.

If the depthFirstSearch() nmethod ever examines an "edge" and di scovers a cell
that has already been visited, then there is a cycle in the naze. (The depth-
first search inplenentation used here never wal ks back over an edge it’s just
traversed, so it won't | ook back and m stakenly diagnose a cycle.) |If sone
cell is not visited at all, then it is not reachable fromthe cell where the
search started. Hence, depth-first search can di agnose both potenti al
deficiencies of a bad naze: having nore than one path between two cells, or
having no path between two cells. (You may want to | ook at the diagnose() and
dept hFi rst Search() methods to see how this is done.)

In a plain-text file called GRADER, suggest (in sinple English) how you could
use depth-first search to generate a random naze (or nore inportantly, lots of
different random mazes), wi thout using disjoint sets at all.

(a) How would your algorithmensure that there is a path between every pair of
cells, but no nore than one path between any pair of cells (i.e., no
cycles)?

(b) How does your algorithmuse random nunbers to generate a different naze
each time? Specifically, what decision should be made by random nunbers
at each recursive invocation of the depth-first search nethod?

These questions can be answered with just a few sentences.

Submi tting your solution

Change (cd) to your hwd directory, which should contain GRADER, Maze.java, any
other files your solution needs, and the set directory. The set directory
shoul d contain DisjointSets.java. You nust submit the |latter because you're
all owed to change it.

I nclude your nane, login, and answer to Part |l in GRADER Make sure it is
just called GRADER, not GRADER txt. Make sure your honmework conpiles and runs
on the _lab_ machines just before you submt.

From your hwd directory, type "submt hwd". (Note that "submit" will not work
if you are inside the set directory!) After submtting, if you realize your
solution is flawed, you may fix it and submit again. You may subnmit as often
as you like. Only the last version you subnit before the deadline will be

gr aded.

readme

