
03/01/13
22:06:43 1readme

 CS 61B Homework 5
 Due 5:30 pm Friday, March 8, 2013

This homework will teach you a more secure way to encapsulate lists than the
method used in Homework 4, and give you practice using it to accomplish tasks
quickly. This is an individual assignment; you may not share code with other
students.

Copy the Homework 5 directory by doing the following, starting from your home
directory.

 cp -r ˜cs61b/hw/hw5 .
 cd hw5

The list package contains encapsulated DList and SList classes (both of which
inherit from an abstract List class). These classes differ from those we have
seen before in a critical way: each ListNode knows which List it is in. A new
invariant in our Lists is that for every ListNode x in a List l, x.myList = l,
UNLESS x is the sentinel. For any sentinel node x, x.myList = null. Because
every ListNode knows its List, we can move some of the methods from the List
class to the ListNode class.

 Methods of List | Methods of ListNode
 |
 public boolean isEmpty() | public Object item()
 public int length() | public void setItem(Object item)
 public void insertFront(Object item) | public ListNode next()
 public void insertBack(Object item) | public ListNode prev()
 public ListNode front() | public void insertAfter(Object item)
 public ListNode back() | public void insertBefore(Object item)
 | public void remove()
 | public boolean isValidNode()

One innovation of these classes is the existence of "invalid nodes," which can
be identified by the isValidNode() method. In Homework 4, the methods next()
and prev() return null when there is no node to return, whereas here they
return an invalid node. A node that has been removed from a List is also
invalid. With the exception of isValidNode(), any method called on an invalid
node will throw an InvalidNodeException.

The item field of ListNode is no longer public, to prevent applications from
storing items in invalid nodes.

Recall that every ListNode knows what List it is in. An invalid node is
represented by any ListNode whose "myList" field is null. In the DList
implementation, the sentinel is an invalid node, which simplifies the
implementations of front(), back(), next(), and prev(). (Take a look at
the code for DListNode.isValidNode.)

Part I (2 points)

Complete the implementation of the DList and DListNode classes.

In DList.java, you will need to implement insertFront(), insertBack(), and the
DList() constructor. You should be able to cut and paste your solutions from
Homework 4 with just a small change. The implementations of front() and back()
are already provided; observe that they are simpler than in Homework 4 because
we use sentinels as invalid nodes.

In DListNode.java, you will need to implement insertAfter(), insertBefore(),
and remove(). Your Homework 4 solutions will be a good start, but you’ll need
to make changes to accommodate these methods’ move from DList to DListNode.

The main() method of list.DList contains code to help test your work.

Part II (8 points)

Your main assignment is to implement a Set ADT in Set.java. Your Set class
must use a List to store the elements of the set. Your Sets should behave like
mathematical sets, which means they should not contain duplicate items. To
make set union and intersection operations run quickly, your Sets will contain
only Comparable elements, and you will keep them sorted in order from least to
greatest element. (You will want to review the Comparable interface on the
Java API Web page.)

You will need to declare some fields and implement the following methods.
 public Set() // Constructs an empty Set.
 public int cardinality() // Number of elements in this Set.
 public void insert(Comparable c) // Insert c into this Set.
 public void union(Set s) // Assign this = (this union s).
 public void intersect(Set s) // Assign this = (this intersect s).
 public String toString() // Express this Set as a String.

Two items o1 and o2 are considered duplicates if o1.compareTo(o2) == 0. By
convention, Java classes are supposed to have o1.compareTo(o2) == 0 if and only
if o1.equals(o2). (Of course, it’s always possible for some idiot to break
this convention, so it would be safest not to depend on it.)

Unlike most previous assignments, each method comes with prescribed time bounds
that you must meet when your Set uses DLists (but not when it uses SLists).
For example, union() and intersect() must run in time proportional to
this.cardinality() + s.cardinality(). This means you do NOT have time to make
a pass through "this" list for every element of s; that would take time
proportional to this.cardinality() * s.cardinality(). To achieve this time
bound, you must take advantage of the fact that Sets are sorted. This time
bound is one reason why Sets may not store duplicate items in their Lists.

On the other hand, insert() need not run in constant time. Since each Set uses
a sorted representation, insert() may need time proportional to the cardinality
of the Set to find the right place to insert a new element, and to ensure that
the new element doesn’t duplicate an old one.

Another constraint is that union() and intersect() may NOT change the Set s.
Furthermore, intersect() may not construct any new ListNodes (it only needs to
remove ListNodes from "this" List), and union() should reuse all the ListNodes
in the Set "this", constructing new nodes only for elements of s that "this"
List lacks. We will deduct points for failing to meet the time bounds or
failing to obey these constraints.

Be sure to declare variables of static type List and ListNode in Set.java, not
variables of type DList, DListNode, SList, or SListNode. Set.java should be
able to switch between using DLists and using SLists by changing one
constructor call in the Set() constructor. (In fact, you can use SList to help
you debug Set if you have trouble getting DList working. But be sure to use a
DList in your final submission unless you can’t get it working.)

Do not modify List.java, ListNode.java, SList.java, or SListNode.java. Do not
modify the prototypes in Set.Java, DList.java, or DListNode.java.

Afterthought (for your own introspection only)
--
If you use SLists instead of DLists, do your union() and intersect() methods
still run within the time bounds? If not, how easy would it be to fix them so
that they do?

03/01/13
22:06:43 2readme

Submitting your solution

Change (cd) to your hw5 directory, which should contain Set.java and the list
directory. The list directory should contain DList.java and DListNode.java.
You’re not allowed to change the other files, so you can’t submit them. You
shouldn’t need any other classes, but you can submit them if you want.

Make sure that your code compiles and runs on the _lab_ machines. Then, from
your hw5 directory, type "submit hw5". (Note that "submit" will not work if
you are inside the list directory!) After submitting, if you realize your
solution is flawed, you may fix it and submit again. You may submit as often
as you like. Only the last version you submit before the deadline will be
graded.

