04/22/09
22:39:16

CS 61B Lab 13
April 23-24, 2009

Goal: to give you experience with an unwei ghted directed graph, represented by
an adj acency matri x.

Pl ease make sure you have a partner for this |ab.

Copy the Lab 13 directory by doing the follow ng, starting fromyour hone
directory.

cp -r $master/lab/labl3 .

The file UDG aph.java contains code for a class UDG aph, an unwei ghted directed
graph represented by a bool ean adj acency matrix adjMatrix[][]. For sinplicity,
vertices are denoted by ints in the range 0...n - 1, where n is the nunber of
vertices. Each entry adjMatrix[i][j] is true if (i, j) is an edge of the
graph; 0 otherw se.

The UDG aph class currently has the foll owi ng nethods.

UDG aph(int n) Constructs a new UDGraph with n vertices and no edges.

get NunVertices() Returns the nunber of vertices in the UDG aph.

get NunEdges() Returns the nunber of edges in the UDG aph.

val idVertex(int v) True if v is a valid vertex nunber (0...n - 1).
hasEdge(int o, int d) True if the graph contains edge (o, d).

addEdge(int o, int d) Adds edge (o, d) to the graph (if not already there).
renmoveEdge(int o, int d) Renobves edge (o, d) fromthe graph (if there).
toString() Returns a String representation of the UDG aph.

You are wel cone to use these nethods and/or nanipulate the fields "adjMatrix",
"vertices", and "edges" directly, as you prefer. The addEdge and renoveEdge
nmet hods have the advantage that they update the "edges" count correctly (always
checki ng whether the edge is present in the graph before the update).

Part |1: Finding vertices reachable by length-2 paths (2 points)

Fill in the body of the nethod UDG aph.|ength2Paths(). This method constructs
and returns a UDG aph with the sane nunber of vertices as "this" UDGraph. The
new graph contains the edge (v, w) if and only if there is a path of length 2

fromv to win "this" graph--in other words, there is sone vertex u such that

(v, u) and (u, w) are both edges of "this" graph.

Note that a length-2 path can be a self-edge: if "this" graph contains the
edges (v, W) and (w, v), then it contains a length-2 path <v, w, v> fromv to
itself, and the new graph should contain the self-edge (v, v). Mreover, if
"this" graph contains the self-edge (v, v), then <v, v, v>is a length-2 path,
so the new graph should contain (v, v).

If a vertex w can be reached froma vertex v by a length-1 path (one edge) in
"this" graph but _not_ by a length-2 path, the new graph should _not_ contain
(v, w.

Try to think of the fastest, sinplest code for |ength2Paths(). 1t’s possible
todoit with a relatively sinple triply-nested loop. You will have to explain
your algorithmto your TA. |If your TA thinks your algorithmis too slow,

you' || be asked to do it again.

Your solution should not change "this" graph.

readme

Fill in the body of the nethod UDG aph. paths(int Iength). This nmethod creates
and returns a UDGraph with the same nunber of vertices as "this" UDGraph. The
new graph contains the edge (v, w) if and only if there is a path of length
"length" (the paranmeter) fromv to win "this" graph. Your nethod shoul d work
for any "length" of 2 or greater.

Note that a length-k path is permtted to use an edge nultiple times. For
exanple, <u, v, w, u, v, w>is a valid length-5 path.

Hnt: First calculate all the paths of length (k - 1). Once you know these,
it's straightforward to conpute all the paths of length k in a manner sinilar
to what you did for Part I.

There is test code in UDG aph.nain() for both Parts |I and II.

Check- of f

2 points: Show your TA your code for |ength2Paths() and explain how you did
it. Run the test code to show that |ength2Paths() works.

2 points: Run the test code to show that paths() works.

