
04/09/09
01:22:56 1readme

 CS 61B Lab 11
 April 9-10, 2009

Please make sure you have a partner for this lab.

Copy the Lab 11 directory by doing the following, starting from your home
directory.

 cp -r $master/lab/lab11 .

All the code is in the dict package. You can compile it from your lab11
directory with

 javac -g dict/*.java

Some test code is provided and can be run with

 java dict.BinaryTree

Familiarize yourself with the fields and methods of the BinaryTree and
BinaryTreeNode classes. BinaryTree is an implementation of the Dictionary
interface (which you also used in Homework 6) as a binary search tree.
Note that BinaryTree uses Comparable objects as keys (since it is an ordered
dictionary), whereas in the Dictionary abstract class, keys are declared as
plain Objects. Thus you will occasionally need to cast Objects to Comparables.

Part I: Finding an Element in a Binary Search Tree (2 points)
--
Complete the implementation of the find() method in dict/BinaryTree.java by
filling in the body of findHelper(). find() takes a key as its single
parameter, and returns an element associated with that key, or null if there is
none. (If there are several elements associated with a key, it doesn’t matter
which one is returned.) findHelper() helps by recursively finding and
returning a node that contains the key (or null if no such node exists).

Take a look at insertHelper() for inspiration. find() should run in O(d) time
on a tree with depth d.

Part II: Removing an Element with a Given Key (2 points)

Fill in the body of remove() method in BinaryTree.java. remove() takes a key
as its single parameter, and removes one item having that key if the tree
contains one. (If there are several elements associated with a key, it doesn’t
matter which one is removed and returned.) remove() returns the same value
that find() returns, but should not call find(). However, remove() SHOULD use
the findHelper() method you wrote for Part I.

remove() should run in O(d) time if the depth of the tree is d.

Check-off

Show your TA or Lab Assistant the code you have written, and run the test
program. You’ll receive points for each part that runs correctly.

2 points: If find() works correctly.
1 point: If remove() works for nodes that have no child or one child.
1 point: If remove() works for nodes that have two children.

