03/04/09
04:13:33

CS 61B Project 2
Net wor k (The Gane)
Due 5pm Wednesday, April 1, 2009
Interface design due in |lab March 12-13
Warni ng: This project
Start early.

is substantially nore time-consuming than Project 1.

This is a teamproject. Forma teamof 2 or 3 people. No teanms of 1 or teans

of 4 or nore are allowed. Your project partners do NOT have to be in your |ab.
Copy the Project 2 directory by doing the follow ng, starting fromyour hone
directory.

cp -r $nmaster/hw pj2 .

cd pj2
Suggested Tineline (if you want to finish on tine)
Design the classes, nodules, and interfaces (see "Teamwrk"). March 11
Have working code for the easier nodul es. March 18
Have working code for identifying a network; progress on search. March 25
Fi ni sh project. March 31

In this project you will inplenent a programthat plays the gane Network

agai nst a human pl ayer or another conputer program Network is played on an
8-by-8 board. There are two players, "Black" and "Wiite." Each player has ten
chips of its own color to place on the board. Wite noves first.

The board has four goal areas: the top row, the bottomrow, the left colum,
and the right colum. Black’'s goal areas are squares 10, 20, 30, 40, 50, 60
and 17, 27, 37, 47, 57, 67. Only Black may place chips in these areas.
Wiite's goal areas are 01, 02, 03, 04, 05, 06 and 71, 72, 73, 74, 75, 76;
Wiite may play there. The corner squares--00, 70, 07, and 77--are dead;
neither player may use them Either player may place a chip in any square not
on the board’ s border.

only

readme

bj ect of Play

Each player tries to conplete a "network” joining its two goal
A network is a sequence of six or
goal areas and termnates in the other.
sequence are connected to each other along straight
(left, right, up, down) or diagonally.

lines, eit

The di agram bel ow shows a wi nning configuration for Black.
Wiite chips on the board as well,
are two w nning bl ack networks.

60 - 65 - 55 - 33 - 35 - 57

20 - 25 - 35 - 13 - 33 - 55 - 57
1 el 11 BBl |0
T e T T R R A
I - R B R
| iesl Bl 1 | | .3
I e T T B R
| | 1eslEB| |BB|BB| |5
o s
1 el 1 1Bl | |7

An eneny chip placed in the straight
connection. In the second network |isted above,
woul d break the connection to Black’s | ower goal.

a white chip

Al t hough nore than one chip nay be placed in a goal
only two chips in the goal areas: the first
Nei t her of the follow ng are networks,
in the upper goal.

because they both make

60 -
20 -

20 -
42 -

42 -
60 -

33 -
65 -

35 - 57
55 - 57

A network cannot pass through the sane chip twice, even if it
once. For that reason the following is not a network.

20 - 25 - 35 - 33 - 55 - 35 - 57

A network cannot pass through a chip without turning a corner.
chip in square 42, the following is not a network.

60 - 42 - 33 - 35 - 25 - 27

but for clarity these are not shown.)
Observe that the second one crosses itself.

ar eas.

nore chips that starts in one of the player’'s
Each consecutive pair of chips in the

her orthogonal ly

(There shoul d be

Here

line between two chips breaks the

in square 56

area, a network can have
and | ast chips in the network.

use of two chips

is only counted

Because of the

03/04/09
04:13:33

Legal Moves

To begin the ganme, choose who is Black and who is Wite in any manner (we use a
random nunber generator). The players alternate taking turns, with Wite
noving first.

The first three rules of legal play are fairly sinple.
1) No chip nay be placed in any of the four corners.
2) No chip may be placed in a goal of the opposite color.
3) No chip may be placed in a square that is already occupied.

The fourth rule is a bit trickier.
4) A player nay not have nore than two chips in a connected group, whether
connected orthogonal Iy or diagonally.
This fourth rule neans that you cannot have three or nore chips of the sane
color in a cluster. A group of three chips forma cluster if one of themis
adj acent to the other two. In the follow ng diagram Black is not permtted to
place a chip in any of the squares marked with an X, because doing so woul d

forma group of 3 or nore chips. (O course, the far left and right colums
are also off-limts to Black.)

| | | | | X| BB| X| [
I 1 1BBI | X| X| X[|
I I X1 X I | | BB | I
I | BB | | I [X | I
I | I | | BB | I | I
There are two kinds of noves: add noves and step noves. In an add nove, a

pl ayer places a chip on the board (follow ng the rules above). Each player has
ten chips, and only add noves are pernmitted until those chips are exhausted.
If neither player has won when all twenty chips are on the board, the rest of

the ganme conprises step noves. |n a step nove, a player nobves a chip to a
different square, subject to the same restrictions. A player is not permtted
to decline to nove a piece (nor to "nove fromsquare ij to square ij").

A step nove nay create a network for the opponent by unbl ocking a connection

between two eneny chips. |f the step nove breaks the network at sone ot her
point, the eneny does not win, but if the network is still intact when the chip
has been placed back on the board, the player taking the step nove loses. |If a

pl ayer makes a nove that results in both players conpleting a network, the
ot her player wins.

To make sure you understand the rules, try playing a few ganes agai nst your
project partners. See the instructions in "Running Network" below. O, use
ten pennies, ten silver coins, and a checkerboard.

Bi bl i ographic note: Network is taken from Sid Sackson, "A Ganut of Ganes,"
Dover Publications (New York), 1992.

readme

Your Task

Your job is to inplenent a MachinePl ayer class that plays Network well. One
subtask is to wite a nmethod that identifies |egal noves; another subtask is to
wite a nethod that finds a nove that is likely to win the gane.

The Machi nePl ayer class is in the player package and extends the abstract
Pl ayer class, which defines the follow ng nethods.

/1 Returns a new nove by "this" player. Internally records the nove (updates
// the internal game board) as a nove by "this" player.
public Move chooseMve();

/1 1f the Move mis legal, records the nove as a nove by the opponent

/'l (updates the internal ganme board) and returns true. |f the nove is

/1 illegal, returns false without nodifying the internal state of "this"

/1 player. This nethod allows your opponents to informyou of their noves.
publ i ¢ bool ean opponent Move(Mve m;

/1 1f the Move mis legal, records the nove as a nove by "this" player

/'l (updates the internal ganme board) and returns true. |If the nove is

/1 illegal, returns false without nodifying the internal state of "this"
/1 player. This nmethod is used to help set up "Network problens" for your
/1l player to solve.

publ i ¢ bool ean forceMve(Mve n);

In addition to the nethods above, inplenment two constructors for MachinePl ayer.

/] Creates a machine player with the given color. Color is either 0 (black)
/1 or 1 (white). (White has the first nove.)
publ i ¢ Machi nePl ayer (i nt col or)

// Creates a machine player with the given color and search depth. Color is
/1 either O (black) or 1 (white). (Wite has the first nove.)
publ i ¢ Machi nePl ayer (i nt color, int searchDepth)

As usual, do not change the signatures of any of these nethods; they are your
interface to other players. You may add hel per nethods.

Your Machi nePl ayer nust record enough internal state, including the current
board configuration, so that chooseMwve() can choose a good (or at the very

| east, legal) nove. In a typical gane, two players and a referee each have
their own internal representation of the board. |If all the inplenentations are
free of bugs, they all have the sane idea of what the board | ooks Iike,

al t hough each of the three uses different data structures. The referee keeps
its own copy to prevent malicious or buggy players fromcheating or corrupting
the board. |If your MachinePlayer is buggy and attenpts to make an illegal

nove, the referee will grant the win to your opponent.

Most of your work will be inplenenting chooseMove(). You will be inplenenting
the minimax al gorithmfor searching gane trees, described in Lecture 17.

A gane tree is a nmapping of all possible noves you can nake, and all possible
responses by your opponent, and all possible responses by you, and so on to a
specified "search depth.” You will NOT need to inplenment a tree data
structure; a "ganme tree" is the structure of a set of recursive nethod calls.

The forceMve() nethod forces your player to make a specified nove. It is for
testing and grading. W can set up particular board configurations by
constructing a Machi nePl ayer and meking an alternating series of forcehMve()
and opponent Move() calls to put the board in the desired configuration. Then
we will call chooseMove() to ensure that your Machi nePl ayer nekes a good

choi ce.

The second Machi nePl ayer constructor, whose second paraneter searchDepth is the

03/04/09
04:13:33

chosen search depth, is also used for debugging and testing your code.

A search depth of one inplies that your Mchi nePl ayer considers all the noves
and chooses the one that yields the "best" board. A search depth of two
inplies that you consider your opponent’s response as well, and choose the nove
that will yield the "best" board after your opponent nekes the best nove
available to it. A search depth of three inplies that you consider two

Machi nePl ayer noves and one opponent nove between them

The first Machi nePl ayer constructor should create a Machi nePl ayer whose search
depth you have chosen so that it always returns a nove within five seconds.
(This precise time limt will only be inportant for the Network tournanment |ate
in the semester.) The second Machi nePl ayer constructor MJST al ways create a
Machi nePl ayer that searches to exactly the specified search depth.

You may want to design the Machi nePl ayer constructed by your first constructor
so that it searches to a variable depth. In particular, you wll alnpst
certainly want to reduce your search depth for step noves, because there are
many nore possible step noves than add noves, and a search depth that is fast
for add noves will be very slow for step noves.

The Move class in Mwve.java is a container for storing the fields needed to

define one nove in Network. It is not an ADT and it has no interesting
invariants, so all its fields are public. It is part of the interface of your
Machi nePl ayer, and it is how your Machi nePl ayer conmuni cates with other
prograns, so you cannot change Move.java in any way. |f you would like to have

addi tional methods or fields, feel free to extend the Myve class; your
Machi nePl ayer may return subcl asses of Myve without any fear.

St rat egy

Where should you start? First, design the structure of your program (see
"Teammor k" below). Then begin by witing a relatively sinple MachinePl ayer
class that sinply chooses sone correct nove, no matter how bad. These actions
will give you partial credit on the project. Based on that foundation, you can
i mpl ement sonet hi ng nore sophisticated that incorporates strategy.

Gane trees rely on an "evaluation function" that assigns a score to each board
that estinmates how well your MachinePlayer is doing. An evaluation function is
necessary because it is rarely possible to search all the way to the end of the
gane. You need to estimate your odds of winning if you nake a particul ar nove.
Your eval uation function should assign a maxi mum positive score to a win by
your MachinePl ayer, and a mini num negative score to a win by the opponent.

Assign an internediate score to a board where neither player has conpleted a
network. One of the npbst inportant but difficult parts of inplenenting gane
search is inventing a board evaluation function that reliably eval uates these
intermedi ate boards. For exanple, a rough evaluation function m ght count how
many pairs of your chips can see each other, and subtract the opponent’s pairs.
A slightly better evaluation function would also try to establish at |east one
chip in each goal early in the game. | leave you to your own wits to inprove
upon these ideas.

You shoul d assign a slightly higher score to a win in one nove than to a win in
three noves, which should get a higher score that a win in five noves, and so
on. Oherw se, your MachinePl ayer m ght always choose the win in three over
the win in one, nove after nove, and never get around to actually wi nning.

You will need to invent an algorithmthat determ nes whether a player has a
wi nni ng network. A good place to ook for clues is Section 13.3 of Goodrich
and Tamassi a, which describes depth-first search in graphs. It's not quite
what you need for the job, but close enough that you' Il be able to nodify it.

To earn full credit, you nust inplenent al pha-beta search, which is discussed
in Lecture 17. Al pha-beta search is a technique for "pruning" a gane tree, so
you don’t need to search the entire tree. Al pha-beta search can be

readme

significantly faster than naive tree search. You can earn partial credit by
i mpl ementing ganme tree search without pruning. |f you can't get that working,
you can earn a little bit of partial credit by |ooking ahead one nove.

You will alnmost certainly want to create a separate class to represent gane
boards internally. One decision you will have to nmake is whether to create

a new gane board or change an existing one each tine you consider a nove. The
latter choice is faster, but it could cause hard-to-solve bugs if you re not
extrenmely careful about how and when you mani pul ate ganme boards.

Late in the senester, we will hold a tournament pitting student MachinePl ayers
agai nst each other. Participation in the tournanent is optional and does not
affect your grade. You will submit your contestant several weeks after the
Project 2 due date, so you will have time to inprove your MachinePl ayer’s

eval uation function and strategy in April. During the tournament, we wll
strictly enforce a time limt of five seconds (which will be checked by our
refereeing software) on the tinme to performone chooseMve(). The w nning team
will receive gift certificates to Anpeba Misic.

This is a difficult project. Do not wait to start working on it. If you don't
have the code that identifies |egal noves inplenmented by Spring Recess, you
woul d be well advised to wallow in neurotic spasnms of fear and worry. W will
have autograder software set up to test your subnmitted code for |egal noves.

Teamwr k (10% of project grade) (show to your TAin Lab 8, March 12 or 13)

Before you start programming, read the Lecture 18 notes carefully, then break
the project up into multiple nodules (tasks). Decide what high-1evel nethods
and cl asses nust be inplenmented, define the interfaces by which these nethods
and cl asses will comunicate, and divide up the work anong your team Sone
possi bl e nmodul es (these seem reasonably nodul ar) are

1) determning whether a nove is valid,

2) generating a list of all valid noves,

3) finding the chips (of the sane color) that formconnections with a chip,

4) determ ning whether a gane board contains any networks for a given

pl ayer,
5) conputing an evaluation function for a board, and
6) performng mnimax tree search

The file GRADER provided in the pj2 directory includes a questionnaire, which
you are required to subnmit. Once you’'ve worked out your classes, nodules, and
interfaces, wite themdown at the bottom of GRADER Your description should
i ncl ude:

- Alist of the classes your programw || need.

- Alist of each of the "nodul es" used in or by MachinePl ayer, which m ght
be simlar to, but nore detailed, than the |ist above.

- For each nodule, list the class(es) the nmodule will be inplenmented in.
It may (or may not) make it easier for you to work as a teamif each
nmodul e is in a separate class.

- For each nodule, describe its interface--specifically, the prototype and
behavi or of each nethod that is available for external callers (outside
the nodule) to call. Don’t include nethods that are only neant to be
called fromw thin the nodule. For each nethod, provide (1) a nethod
prototype and (2) a conplete, unanbi guous description of the behavior of
the nmethod/ modul e. (This description will also appear before the nethod
in your code’'s conments.)

- Who is assigned the task of inplenenting each nodul e?

If you have defined your classes, nodules, and nodule interfaces well, you
shoul d be able to inplement any one of the nodul es wi thout having deci ded how
to inplenment any of the others. This will allow you to divide up the chores
and work quickly as a team See the Lecture 18 notes for details.

You shoul d have a draft of your GRADER file ready to show your TAin Lab 8
(March 12/13). Your Lab 8 score depends on having a finished draft of your

03/04/09
04:13:33

nodul es and interfaces. Your TA will comment on your design decisions.

You may change some of your design decisions based on your TA's feedback, and
you wi |l probably make other changes as you program Be sure to update your
GRADER to reflect these changes. The GRADER file you submt with this project
shoul d reflect the FINAL decisions you nmake about nodul es and interfaces.

Before you subnmit, make sure your GRADER file tells us who _actually_

i mpl ement ed each portion of your project. Although you nust hand i n GRADER
with your project, you nust also hand in a printed version of GRADER on which
you have witten "This is a truthful statenent of how we divided the | abor for
this project.” ALL of your team nenbers nust put their signatures under this
statement. This statenment is due the Friday after the project deadline. You
will not receive a grade if you don’t turn it in.

Your design of classes and interfaces with be worth about 10% of your project
gr ade.

Runni ng Net wor k

You can run Network fromyour pj2 directory in several ways.

java Network human random
This pits you against a very naive nachine player that makes random | egal
noves. Use this to learn to play the ganme. The human plays white and the
random pl ayer play black. To reverse colors, swap "human" and "randoni.

java Network human human
Conpet e agai nst your project partner.

java Network human machi ne
Conpet e agai nst your Machi nePl ayer.

java Network machi ne random
Your Machi nePl ayer conpetes agai nst the random pl ayer.

java Network machi ne machi ne
Your Machi nePl ayer conpetes against itself.

Al'l the conbinations of "machine", "human", and "randonf work. It’s
particularly amusing to pit two random pl ayers agai nst each other.

If you put a "-q" switch right after the word "Network", Network will quit
i medi atel y when the game ends. This can be useful for batch testing.

Submitting your Solution

Be sure that you have answered all the questions in GRADER before submtting.
Don’'t forget that it's worth 10% of your grade.

Desi gnate one nenber of your teamto subnit the project. |f you resubnit, the
proj ect should always be submitted by the same student. If for sone reason a
different partner nmust submt (because the designated menber is out of town,
for instance), you nust send cs6lb@ory.eecs a listing of your team nenbers,
expl ai ning which of them have submitted the project and why. Let us know which
subm ssion you want graded. If you’ve submitted your project once, or even
witten a substantial anmount of code together, you may not change partners

wi t hout the perm ssion of the instructor.

The designated teanmate only: change (cd) to your pj2 directory, which should
contain the player directory (i.e. the player package), which should contain
your Machi nePl ayer.java and other Java files. You nay al so subnit other
packages in your pj2 directory (e.g. a list package). Type "subnmit pj2".

The submit programw || not submt Mve.java and Pl ayer.java, because you're
not allowed to change them

Your project will be graded in part on correctness and the quality of noves
chosen by chooseMove(). This grading will be done using automatic test cases.
Be sure the follow ng statements apply to your chooseMuve().

1) forceMve and opponent Move return true if the given nove is |egal.

2) forceMove and opponent Move return false if the given nove is illegal.

3) chooseMove returns only |egal noves.

4) 1f a winning nove exists, chooseMbve selects one. (This will happen
automatically if you are searching one |level of the gane tree.)

5) If you cannot win in this step, but can prevent your opponent from
Wi nning during its next nove, chooseMwve selects a nove that does this.
(This will happen automatically if you are searching two |evels of the
gane tree.)

6) Your player can beat the random player alnost every time. Any reasonable
search strategy and eval uati on function should acconplish this.

You will also be graded on style, docunentation, efficiency, and the use of
encapsul ati on.

1) Each nmethod nust be preceded by a comment describing its behavior
unanbi guously. These conments nust include descriptions of what each
paraneter is for, and what the nmethod returns (if anything).
They nust al so include a description of what the nethod does (though
not necessarily how it does it) detailed enough that sonebody el se coul d
i npl ement a nethod that does the same thing fromscratch, using only the
comments and this readme file.

Sone net hods serve as entry points to the nodul es you designed when
you began the project. The prototypes and behavioral descriptions of
these nethods are interfaces, and should be included in GRADER

2) Al classes, fields, and nmethods nmust have the proper public/private/
prot ect ed/ package qualifier. W wll deduct points if you make things
public that could conceivably allow a user to corrupt the data structure.

3) There are no asynptotic limts on running tinme. However, part of your
job is to avoid using inefficient algorithns and data structures. |If
your Machi nePl ayer takes nuch |onger than 5 seconds to search to a depth
of two on a Soda |ab machine, we will scrutinize your subm ssion for
inefficient algorithns and data structures.

4) You shoul d have divided up the tasks into well-defined nodules in your
GRADER file and in your software.

5) We will deduct points for code that does not match the follow ng style
gui del i nes.

- Classes that contain extraneous debuggi ng code, print statements, or
neani ngl ess comrents that nmake the code hard to read will be penalized.
(I1t’s okay to have nethods whose sole purpose is to contain |ots of
debuggi ng code, so long as your comrents informthe reader who grades your
project that he can skip those methods. These nmethods should not contain
anyt hi ng necessary to the functioning of your project.)

- Your file should be indented in the manner enforced by Emacs (e.g., a
two- space or four-space indentation inside braces), and used in the lecture
notes throughout the semester. The indentation should clearly show the
structure of nested statements like loops and if statements. Sl oppy
indentation will be penalized.

- Al if, else, while, do, and for statenments should use braces. (Ask me if
you want to know why.)

- Al classes start with a capital letter, all methods and (non-final) data
fields start with a |lower case letter, and in both cases, each new word
within the nane starts with a capital letter. Constants (final fields) are
all capital letters only.

- Nurerical constants with special neaning shoul d al ways be represented by
all-caps "final static" constants.

03/04/09
04:13:33

Al class, nmethod, field, and variable names shoul d be nmeaningful to a
human reader.

Met hods shoul d not exceed about 100 lines. Any nethod that |ong can
probably be broken up into | ogical pieces. The same is probably true for
any nmethod that needs nore than 7 levels of indentation.

Avoi d unnecessary duplicated code; if you use the sane (or very simlar)
fifteen lines of code in two different places, those lines should probably
be a separate nethod call.

Prograns should be easy to read.

Finally, we will be |ooking at your code to see whether you have inplenented
m ni max gane tree search, and whether you use al pha-beta pruning.

readme

