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                               CS 61B  Project 1
                                Sharks and Fish
                     Due 5pm Wednesday, February 18, 2009

Warning:  This project is time-consuming.  Start early.

This is an individual assignment; you may not share code with other students.

Getting started: You will find the code for this assignment in $master/hw/pj1/.
Start by copying it into your own pj1 directory.

In this project you will implement a simulation of an ocean containing sharks
and fish.  You will also write code to convert an ocean into a run-length
encoding and back.  The ocean is rectangular, but the edges are connected
together in a topological donut or torus.  This means that the top (North) and
bottom (South) edges are considered adjacent, so if you start at the top edge
and go up, you’ll be at the bottom edge (just like in the video game
Asteroids).  Similarly, the East and West edges are connected (just like in
Pac Man).  The ocean is divided into square cells, which are indexed as follows
(for a 4x3 ocean):

                         ------> x

                     |   -----------------------------
                     |   | 0, 0 | 1, 0 | 2, 0 | 3, 0 |
                   y |   -----------------------------
                     |   | 0, 1 | 1, 1 | 2, 1 | 3, 1 |
                     v   -----------------------------
                         | 0, 2 | 1, 2 | 2, 2 | 3, 2 |
                         -----------------------------

Note that the origin is in the upper left; the x-coordinate increases as you
move right, and the y-coordinate increases as you go down.  (This conforms to
Java’s graphics commands, though you won’t need to use them directly in this
project.)  You can also refer to locations such as (4, 0) or (-4, 3), which are
both the same as (0, 0) in a 4x3 ocean.  (More generally, the coordinates in
an ixj ocean are taken modulo i for the x-coordinate, which is horizontal, and
modulo j for the y-coordinate, which is vertical.)  Any pair of integers will
give you a valid position in the grid by "wrapping around" at the edges.

(Hint:  programming will be a lot easier if you write helper functions that do
the wrapping around for you, and use them in all your methods, so you don’t
have to think about it again.)

There are two kinds of entities in this ocean:  sharks and fish.  The sharks
and fish breed, eat, and die in the ocean.  Each cell of the grid can be
occupied by a single shark or fish, or it can be empty.

Part I:  Simulating Sharks and Fish
===================================
This part is worth 40% of your total score.  (8 points out of 20).

An ocean is described by its size and the initial placement of sharks and fish
in the ocean.  It is also described by a parameter called the "starveTime" for
a shark.  This is the number of simulation timesteps that a shark can live
through without eating.

The simulation proceeds in timesteps.  A "timestep" is a _transition_ from one
ocean to the next.  (Don’t confuse timesteps with oceans; every timestep starts
with one ocean and ends with another.)  The rules for how the ocean looks at
the end of a timestep depend only on the occupants of the cells at the
beginning of the timestep.  Therefore, to obtain correct behavior, you will
often be working with two copies of the ocean simultaneously; one representing
the ocean at the beginning of the timestep, and the other representing the
ocean at the end of the timestep.  (If you are foolish enough to try to
implement a timestep using just a single Ocean object, you will modify the
values of cells whose old values are still needed to compute the new values for
other cells, and thus you will compute the wrong answer.)

The contents of any particular cell at the end of a timestep depend only on the
contents of that cell and its eight neighbors at the beginning of the timestep.
The "neighbors" are the eight adjacent cells:  the cells immediately to the
north, south, east, and west, as well as the four diagonal neighbors.  Here are
the rules:

1) If a cell contains a shark, and any of its neighbors is a fish, then the
shark eats during the timestep, and it remains in the cell at the end of the
timestep.  (We may have multiple sharks sharing the same fish.  This is fine;
they all get enough to eat.)

2) If a cell contains a shark, and none of its neighbors is a fish, it gets
hungrier during the timestep.  If this timestep is the (starveTime + 1)th
timestep the shark has gone through without eating, then the shark dies
(disappears).  Otherwise, it remains in the cell.  An example demonstrating
this rule appears below.

3) If a cell contains a fish, and all of its neighbors are either empty or are
other fish, then the fish stays where it is.

4) If a cell contains a fish, and one of its neighbors is a shark, then the
fish is eaten by a shark, and therefore disappears.

5) If a cell contains a fish, and two or more of its neighbors are sharks, then
a new shark is born in that cell.  Sharks are well-fed at birth; _after_ they
are born, they can survive an additional starveTime timesteps without eating.
(But they will die at the end of starveTime + 1 consecutive timesteps without
eating.)

6) If a cell is empty, and fewer than two of its neighbors are fish, then the
cell remains empty.

7) If a cell is empty, at least two of its neighbors are fish, and at most one
of its neighbors is a shark, then a new fish is born in that cell.

8) If a cell is empty, at least two of its neighbors are fish, and at least two
of its neighbors are sharks, then a new shark is born in that cell.  (The new
shark is well-fed at birth, even though it hasn’t eaten a fish yet.)
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starveTime Examples
-------------------
The following example demonstrates exactly when sharks die.  Suppose the
starveTime is 3.  Suppose the initial ocean, Ocean 0, contains a well-fed
shark (A).  If that shark never gets to eat, it will survive three timesteps
without food, making it to Ocean 3; but it will be dead by Ocean 4.  Another
shark is born in Ocean 1, and is fed during the transition from Ocean 2 to
Ocean 3, but is never fed again.  It survives to Ocean 6, but it is dead by
Ocean 7.

Ocean 0    shark A (well-fed)          [empty cell]
timestep                               shark B born
Ocean 1    shark A                     shark B (well-fed)
timestep
Ocean 2    shark A                     shark B
timestep                               shark B eats a fish (born last timestep)
Ocean 3    shark A                     shark B (well-fed)
timestep   shark A dies
Ocean 4    [empty cell]                shark B
timestep
Ocean 5                                shark B
timestep
Ocean 6                                shark B
timestep                               shark B dies
Ocean 7                                [empty cell]

Your task
---------
Fill in the implementation of the Ocean class.  We have already provided you
with the public method definitions you will need.  You are required to provide
implementations of all the methods whose prototypes appear in Ocean.java.
Among these methods is a constructor that takes three integers as input,
representing the size of the ocean and the starveTime of the sharks, and
returns an ocean of the specified size.  For example, the statement

    Ocean sea = new Ocean(i, j, starveTime);

should create an ixj Ocean object.  In your implementation, you may define any
fields, additional methods, additional classes, or other .java files you wish,
but you cannot change the prototypes in Ocean.java.  We will test your code by
calling your methods directly, so it is important that you follow this rule.
You should read Ocean.java carefully for an explanation of what methods you
must write.  The most important of these is timeStep(), the method that
performs your simulation.

Your Ocean class should represent the ocean as one or more simple two-
dimensional arrays.  It is up to you decide how to represent each element of
the array (in particular, whether it is empty or contains a shark or fish, and
if it’s a shark, how long ago it last ate).  Your internal representation is
not required to use the constants EMPTY, SHARK, and FISH, which are part of the
public interface, but it can if you want.  However, the cellContents() method
must return these constants--you cannot change this part of the interface.

We have provided Java classes to help you debug your implementation and animate
your ocean, in these files:

    Simulation.java
    SimText.java

The Simulation and SimText classes (which consist primarily of a simulation
driver called main) generate random input to initialize the ocean, and animate
the sequence of oceans returned by the timeStep method of your Ocean class.  So
that they can initialize your Ocean and monitor the fish and sharks in your
Ocean during the simulation, you must implement the methods addFish, addShark,

cellContents, width, and height.

The Simulation and SimText programs take up to three command-line parameters.
The first two specify the width and height of the ocean.  The third parameter
specifies the value of starveTime.  For example, if you run

    java Simulation 25 30 1

then Simulation will animate a 25x30 ocean with a starveTime of 1.  If you run
"java Simulation" with no parameters, by default Simulation will animate a
80x80 ocean with a starveTime of 3.  (SimText animates a 50x25 ocean using text
on your terminal.)  With some choices of parameters, the ocean quickly dies
out; with others, it teems forever.

In the animation produced by Simulation, sharks are red squares and fish are
green squares.  In the animation produced by SimText, sharks are ’S’ characters
and fish are ’˜’ characters.  Simulation is more fun to watch, but SimText may
be easier to use for debugging and remote access.

Part II:  Converting a Run-Length Encoding to an Ocean
======================================================
This part is worth 25% of your total score.  (5 points out of 20).

For a large ocean, an Ocean object can consume quite a bit of memory or disk
space.  For long-term storage, we can store an Ocean more efficiently if we
represent it as a "run-length encoding."  Imagine taking all the rows of cells
in the ocean, and connecting them into one long strip.  Think of the cells as
being numbered thusly:

                        -----------------------------
                        |   0  |   1  |   2  |   3  |
                        -----------------------------
                        |   4  |   5  |   6  |   7  |
                        -----------------------------
                        |   8  |   9  |  10  |  11  |
                        -----------------------------

Typically, many regions of this strip are "runs" of many empty cells in a row,
or many fish in a row, or many equally-hungry sharks in a row.  Run-length
encoding is a technique in which a sequence of identical consecutive cells are
represented as a single record or object.  For instance, the following strip of
fish (F), sharks fed two timesteps ago (S2), and empty cells (.):

            ------------------------------------------------------
            | F | F | F | S2 | S2 | S2 | S2 | S2 | . | . | . | . |
            ------------------------------------------------------

could be represented with just three records, each representing one "run":

                              ------------------
                              | F3 | S2,5 | .4 |
                              ------------------

"F3" means that there are three consecutive fish, followed by "S2,5", meaning
five consecutive sharks fed two timesteps ago, and then ".4":  four empty
cells.  With this encoding, a huge ocean with just a few fish or sharks can be
stored in a tiny amount of memory.  (Note, however, that a shark that just ate
cannot be represented together with a shark that hasn’t eaten in the last
timestep.  For a correct encoding, you must separate sharks based on their
hunger!)  If you are familiar with .GIF image files (often encountered on the
Web), you might be interested to know that they use run-length encoding to
reduce their sizes.
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Your task is to implement a RunLengthEncoding class, which represents a
run-length encoding as a linked list of "run" objects.  It is up to you whether
to use a singly- or doubly-linked list, but a doubly-linked list may make Part
IV easier.

Because this is a data structures course, please use your own list class(es) or
ones you have learned in class.  In future courses, it will sometimes make more
sense for you to use a linked list class written by somebody else, such as
java.util.LinkedList.  However, in CS 61B this is forbidden, because I want you
to be always aware of exactly how your data structures work.  Likewise, you may
not use java.util.Vector or other built-in data structures.

Part II(a):  Implement two constructors for RunLengthEncodings.  One constructs
a run-length encoding of an empty ocean, and the other constructs a run-length
encoding based on two arrays provided as parameters to the constructor.  These
arrays represent the runs that your run-length coding should contain, so you
are simply converting arrays to a linked list.  (See the prototype in
RunLengthEncoding.java.)

Part II(b):  Your run-length encodings will only be useful if other classes
have the ability to read them after you create them.  Therefore, implement the
nextRun() and restartRuns() methods.  These two methods work together to return
all the runs in a run-length encoding to an outside application, one by one.
Each time nextRun() is invoked, it returns a different run--represented as a
TypeAndSize object--until every run has been returned.  The first time
nextRun() is invoked, it returns the first run in the encoding, which contains
cell (0, 0).  After every run has been returned, nextRun() returns null, which
lets the calling program know that there are no more runs in the encoding.

The restartRuns() method resets the enumeration, so that nextRun() will once
again return the first run as if it were being called for the first time.
Warning:  the test code will not necessarily call restartRuns() before the
first time nextRun() is called.

IMPORTANT NOTE on nextRun() and restartRuns():  your methods in the
RunLengthEncoding class should never call these methods.  The nextRun() and
restartRuns() methods are provided so that _other_ classes (specifically, the
Test program that autogrades your project) can read the contents of a
run-length encoding.  If your RunLengthEncoding methods call them, they will
mess up the position of the internal pointer for the other classes.

IMPORTANT NOTE on TypeAndSize:  The Java "return" keyword only allows you to
return one value from a method call.  But the nextRun() method needs to return
two values--the length of a run, and the type of object it contains.  How can
it do this?  Answer:  by returning a "TypeAndSize" object.  A TypeAndSize
object is nothing more than a way to return two integers at once.  That’s it.
Each time nextRun() is called, it creates a TypeAndSize object (or it will once
you’ve coded it to do so), fills in the values, and returns it to the calling
routine, which then throws it away.  The TypeAndSize object is part of the
predefined interface of your RunLengthEncoding class, so you CANNOT change it,
because the calling programs (including the autograder) are relying on you to
return TypeAndSize objects according to spec.  TypeAndSize objects are NOT
suitable as a way to represent a run in your run-length encoding, because they
do not encode a shark’s hunger.

Part II(c):  Implement a toOcean() method in the RunLengthEncoding class, which
converts a run-length encoding to an Ocean object.  To accomplish this, you
will need to implement a new addShark() method in the Ocean class, so that you
can specify the hunger of each shark you add to the ocean.  This way, you can
convert an Ocean to a run-length encoding and back again without forgetting how
hungry each shark was.

Read RunLengthEncoding.java carefully for an explanation of what methods you
must write.  The fields of the Ocean class MUST be private, and the
RunLengthEncoding class cannot manipulate these fields directly.  Hence, the
toOcean() method will rely upon the Ocean constructor and the addFish() and
addShark() methods.

You cannot change any of the prototypes in RunLengthEncoding.java, and you
cannot change the file TypeAndSize.java.  Again, we will test your code by
calling your methods directly.

Part III:  Converting an Ocean to a Run-Length Encoding
=======================================================
This part is worth 25% of your total score.  (5 points out of 20).

Next, write a RunLengthEncoding constructor that takes an Ocean object as its
sole parameter and converts it into a run-length encoding of the Ocean.  To
accomplish this, you will need to implement a sharkFeeding() method in the
Ocean class, which tells you how hungry a given shark is.  Read Ocean.java and
RunLengthEncoding.java carefully for an explanation of what methods you must
write.

The fields of the Ocean class MUST be private, so the RunLengthEncoding
constructor will rely upon the width(), height(), starveTime(), cellContents(),
and sharkFeeding() methods.

Testing
-------
This is worth 1 point out of the 5, but should probably be done as soon as you
can during Part III.

Your RunLengthEncoding implementation is required to have a check() method,
which walks through the run-length encoding and checks its validity.
Specifically, it should print a warning message if any of the following
problems are found:

    - If two consecutive runs have exactly the same type of contents.
      For instance, an "F12" run followed by an "F8" run is illegal, because
      they should have been consolidated into a single run.  (Don’t forget,
      though, that sharks are divided based on how recently they’ve eaten.)
    - If the sum of all run lengths doesn’t equal the size (in cells) of the
      Ocean; i.e. its width times its height.

You may find that the check() method is very useful in helping to debug your
RunLengthEncoding constructors and addFish() and addShark() in Part IV.

Part IV:  Adding a Fish or Shark to a Run-Length Encoding
=========================================================
The last part is the hardest, but it is only worth 10% of the total score
(2 points out of 20), so don’t panic if you can’t finish it.

Implement the addFish() and addShark() methods of the RunLengthEncoding class,
which are similar to the addFish() and addShark() methods of the Ocean class.
However, this code is much trickier to write.  Observe that addFish() and
addShark() can lengthen, or even shorten, an existing run-length encoding.  To
add a shark or fish to a run-length encoded ocean, you will need to find the
right run in the linked list, and perhaps break it apart into two or three
runs.  If the new shark or fish is adjacent to other sharks or fish, you should
consolidate runs to keep memory use down.  (Your check() method ensures that
your encoding is as compact as possible.)

Your addFish() and addShark() routines should run in time proportional to the
number of runs in the encoding.  Therefore, you may not convert the run-length
encoding to an Ocean object, add the fish or shark to the Ocean, and then
convert back to a run-length encoding; that is much too slow.
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Submitting your Solution
------------------------
Make sure that your program compiles and runs on the _lab_ machines with the
autograding program Test.class, which is included with the project files.
(To run it, compile your project, compile Test4.java, then run "java Test".)
The autograder will assign your project a score, which forms part of your final
project score.  Please do not try to fake out the autograder by manually
encoding the output it expects; if you do, a human reader will catch you, and
we will prosecute cheating harshly.

Change (cd) to your pj1 directory, which should contain Ocean.java,
RunLengthEncoding.java, and any other .java files you wish to submit.
From your pj1 directory, type "submit pj1".  After submitting, if you realize
your solution is flawed, you may fix it and submit again.  You may submit as
often as you like.  Only the last version you submit will be graded, unless you
inform your reader that you would prefer to have an earlier submission graded
instead.  If your submission is late, you will lose 1% of your earned score for
every two hours (rounded up) your project is late.


