04/09/09
18:23:11

CS 61B Honework 8
Due 5pm Wednesday, April 15, 2009

This homework will give you practice inplenmenting sorting algorithns, and wll
illustrate how sorting linked Iists can be different fromsorting arrays.
This is an individual assignnent; you may not share code with other students.

Copy the Homework 8 directory by doing the follow ng, starting fromyour hone
directory.

cp -r $master/hw hwg .

Your job is to inplenent two sorting algorithnms for linked lists. The data
structure you will use is a catenable queue. "Catenable" nmeans that two queues
can be concatenated into a single queue efficiently--in Q(1) tine. The

Li nkedQueue data structure is inplenmented as a singly-linked list with a tail
poi nter, much |like the one you worked with in Lab 3.

The LinkedQueue class (in the list package) has the foll ow ng nethods.

publ i
publ i

Qbj ect nth(int n);
voi d append(Li nkedQueue q);

public Li nkedQueue();
public int size();
publ i c bool ean i sEnpty();
public void enqueue(Ohject iten);
public Obj ect dequeue() throws QueueEnptyException;
public Object front() throws QueueEnptyException;
public String toString();
c
c

The second-last nethod, nth(), returns itemn in the queue (with the assunption
that itens are nunbered from1l) without renoving it. The |ast nethod,
append(), concatenates the contents of g onto the end of this queue (in
constant tinme), and | eaves q enpty.

You will inplenment nmergesort and quicksort in the file ListSorts.java. In
Parts | and Il below, assume that the input LinkedQueue (to be sorted) contains
only Conparable items, so that casting items to Conparable is safe. Al

conpari sons shoul d be done using the conpareTo nmethod. Your code should be
work with any Conparabl e objects, not just the Integer objects used by the test
code. (In other words, do not cast queue items to Integers.)

The dequeue() and front() nethods can throw QueueEnpt yExceptions; make sure
that these exceptions are always caught. (If your code is bug-free, such an
exception will never occur, so handl e caught exceptions by sinply printing an
error nmessage.) Do not add a "throws" clause to any nethod prototype that
doesn’t al ready have one.

Part | (4 points)
| mpl ement nergesort on Li nkedQueues using the follow ng three steps.
(1) Wite a nmethod called makeQueueOf Queues() that takes a LinkedQueue as
input and returns a queue of queues in which each queue contains one itemfrom
the input queue. For exanple, if the input queue is [35 2], this nethod
should return the queue [[3] [5] [2] 1].

public static LinkedQueue makeQueueCOf Queues(Li nkedQueue q);

(2) Wite a method called nmergeSortedQueues() that nerges two sorted queues
into one. See the coments in ListSorts.java for details.

public static LinkedQueue nergeSortedQueues(Li nkedQueue g1, LinkedQueue g2);

(3) Inplement nmergeSort(), which sorts a LinkedQueue q as follows. First,

readme

convert g into a queue of queues using makeQueueOf Queues(). Repeatedly do the
following: renpve two itens fromthe queue of queues, nerge them using

nmer geSor t edQueues(), and enqueue the resulting queue in the queue of queues.
When there is only one queue left on the queue of queues, nobve its itens back
to q (preferably using the fast append() nethod).

public static void nmergeSort (Li nkedQueue q);

Part 1l (4 points)

I mpl ement qui cksort on Li nkedQueues using the follow ng two steps.

(1) Inplenment a partition() nmethod that partitions a queue into three separate
queues containing items |ess than, equal to, or greater than a pivot item
Again, see the comments for details.

public static void partition(Li nkedQueue gln, Conparable pivot,
Li nkedQueue qSnmal |, LinkedQueue gEqual s,
Li nkedQueue gLarge);

(2) Inplement quickSort(), which sorts a LinkedQueue q as follows. Choose a
random i nteger between 1 and q.size(). Find the corresponding itemusing the
nth() nmethod, and use the itemas the pivot in a call to partition().
Recursively quickSort() the smaller and | arger partitions, and then put all of
the items back into g in sorted order by using the append() nethod.

public static void quickSort (Li nkedQueue q);

There is test code for both nergesort and quicksort; run "java ListSorts".
The test code generates different randomarrays each tinme you run it.

| strongly advise that you also test that your nergesort and quicksort both
work on lists of size zero and one. (Qur autograder will.)

Part 111 (1 point)

Uncomment the timing code in the main() nethod, then run your sorting routines
on larger lists. By changing the SORTSI ZE constant, you may change the size of
the queues you sort. What are the running times (in milliseconds) for sorting
lists of sizes 10, 100, 1000, and 10,000? Also try 100,000 if your code can do
it. Put your answers in the GRADER file. (Do NOT put a .txt suffix on the
filenane!)

Part 1V (1 point)

A sort is _stable_if items with equal keys always come out in the sanme order
they went in. If you sort the database records [3:hex 7:boo 3:spa] by
nunber, and the output is [3:spa 3:hex 7:boo], then the sort is not stable
because two records with the same key (3) traded pl aces.

I's your nergesort always stable? Explain why or why not.
I's your quicksort always stable? Explain why or why not.

G ve a sentence or two in your explanations that describe where in your code or
in the data structures the stability of the sort is decided--that is, whether
or not equal items are kept in their original order at critical parts of the
sorting process. Put your answers in the GRADER file.

04/09/09
18:23:11

Submi tting your solution

Change (cd) to your hw8 directory, which should contain GRADER and
ListSorts.java. (Your entire inplenmentation should be in ListSorts.java.)
You're not allowed to change any other files, so you can’t subnmit them

I ncl ude your name, login, and answers to Parts Ill and IV in GRADER Make sure
your code conpiles and your tests run correctly on the _lab_ nachines just
before you subnit.

From your hw8 directory, type "submt hw8". You may subnit as often as you
like. Only the last version you subnit before the deadline will be graded.

readme

