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                               CS 61B  Homework 4
                      Due 5pm Wednesday, February 25, 2009

This homework will give you practice with writing doubly-linked lists and using
subclasses.  This is an individual assignment; you may not share code with
other students.

Copy the Homework 4 directory by doing the following, starting from your home
directory.

    cp -r $master/hw/hw4 .
    cd hw4

When you did Project 1, you probably noticed that the SList ADT doesn’t allow
you to walk through an SList and process each node as you go.  Either you must
violate the ADT by manipulating the SListNode pointers directly from your
RunLengthEncoding class, or you must use the slow nth() method to access each
successive element, thereby obtaining a toOcean() method that runs in time
proportional to N^2, where N is the size of the list.  Because we didn’t know
about Java packages, we were unable to develop a really satisfying list ADT.

In this homework, you will implement a doubly-linked list ADT that allows an
application to hold list nodes and hop from node to node quickly.  How do we
make the list an ADT if applications can get access to list nodes?  It’s easy:
we put all the list code in a package called "list", and we declare the fields
of DListNode protected--except the "item" field, which is public.  Applications
can’t access the "prev" or "next" fields of a DListNode, so they can’t violate
any List invariants.

I’ve chosen to make the "item" field public because it doesn’t take part in any
invariants, so it does no harm to make it public.  Applications may read and
change "item" as they please.  In fact, no method is provided for reading the
"item" field indirectly.

Part I  (6 points)
------------------
list/DList.java contains a skeleton of a doubly-linked list class.  Fill in the
method implementations.

Your DList should be circularly-linked, and its head should be a sentinel node
(which holds no item) as described in Lecture 8.  An empty DList is signified
by a sentinel node that points to itself.  Some DList methods return
DListNodes; they should NEVER return the sentinel under any circumstances.
Your DList should satisfy the following invariants.

    1)  For any DList d, d.head != null.
    2)  For any DListNode x in a DList, x.next != null.
    3)  For any DListNode x in a DList, x.prev != null.
    4)  For any DListNode x in a DList, if x.next == y, then y.prev == x.
    5)  For any DListNode x in a DList, if x.prev == y, then y.next == x.
    6)  For any DList d, the field d.size is the number of DListNodes,
        NOT COUNTING the sentinel, that can be accessed from the sentinel
        (d.head) by a sequence of "next" references.

The DList class includes a newNode() method whose sole purpose is to call the
DListNode constructor.  All of your methods that insert a new node should call
this method; they should not call the DListNode constructor directly.  This
will help minimize the number of methods you need to override in Part III.

Do not change any of the method prototypes; as usual, our test code expects you
to adhere to the interface we provide.  Do not change the fields of DList or
DListNode.  You may add helper methods as you please.

You are welcome to create a main() method with test code.  It will not be
graded.  We’ll be testing your DList class, so you should too.

A quirk of Java is that you must compile and run your code from outside the
list/ directory using the following syntax.

  javac -g list/DListNode.java
  java list.DListNode

Part II  (1 point)
------------------
Our ADT is not as well protected as we would like.  There are several ways by
which a hostile (or stupid) application can corrupt our DList (i.e., make it
violate an invariant) through method calls alone.  Describe one in a text file
named GRADER (which will be submitted with your code).

At the top of the GRADER file, include your name and cs61b login ID.

Part III  (3 points)
--------------------
Implement a "lockable" doubly-linked list ADT:  a list in which any node can be
"locked."  A locked node can never be removed from its list.  Any attempt to
remove a locked node has no effect (not even an error message).  Your locked
list classes should be in the list package alongside DList and DListNode.

First, define a LockDListNode class that extends DListNode and carries
information about whether it has been locked.  LockDListNodes are not locked
when they are first created.  Your LockDListNode constructor(s) should call a
DListNode constructor to avoid code duplication.

Second, define a LockDList class that extends DList and includes an additional
method

    public void lockNode(DListNode node) { ... }

that permanently locks "node".

DO NOT CHANGE THE SIGNATURE OF lockNode().  The parameter really is supposed to
be of static type DListNode, not LockDListNode.  I chose this signature for the
convenience of the users of your LockDList.  It saves them the nuisance of
having to cast every node they want to lock.  Instead, it’s your job to take
care of that cast (from DListNode to LockDListNode).

Your LockDList class should override just enough methods to ensure that
(1)  LockDListNodes are always used in LockDLists (instead of DListNodes), and
(2)  locked nodes cannot be removed from a list.

WARNING:  To override a method, you must write a new method in the subclass
with EXACTLY the same prototype.  You can’t change a parameter’s type to a
subclass.  Overriding won’t work if you do that.

Your overriding methods should include calls to the overridden superclass
methods whenever it makes sense to do so.  Unnecessary code duplication will be
penalized.

Again, I recommend you test your code.
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Submitting your solution
------------------------
Change (cd) to your hw4 directory, which should contain a file called GRADER
and the list directory.  The list directory should contain DList.java,
DListNode.java, LockDList.java, LockDListNode.java, and any other .java files
required by those classes.  Make sure your code compiles and your tests run
correctly on the _lab_ machines just before you submit.

Your GRADER file should include your name, login, and answer to Part II.

From your hw4 directory, type "submit hw4".  (Note that "submit" will not work
if you are inside the list directory!)  After submitting, if you realize your
solution is flawed, you may fix it and submit again.  You may submit as often
as you like.  Only the last version you submit before the deadline will be
graded.


