02/18/09
23:01:39

CS 61B Honework 4
Due 5pm Wednesday, February 25, 2009

This homework will give you practice with witing doubly-linked Iists and using
subcl asses. This is an individual assignment; you may not share code with
ot her students.

Copy the Homework 4 directory by doing the follow ng, starting fromyour hone
directory.

cp -r $master/hw hwd .
cd hwa

Wien you did Project 1, you probably noticed that the SList ADT doesn't allow
you to wal k through an SList and process each node as you go. Either you nust
violate the ADT by manipul ati ng the SListNode pointers directly from your
RunLengt hEncodi ng cl ass, or you nust use the slow nth() nmethod to access each
successive el enment, thereby obtaining a toOcean() nethod that runs in tine
proportional to N*2, where Nis the size of the list. Because we didn’t know
about Java packages, we were unable to develop a really satisfying list ADT.

I'n this homework, you will inplenment a doubly-linked |list ADT that allows an
application to hold list nodes and hop fromnode to node quickly. How do we
make the list an ADT if applications can get access to |list nodes? It’'s easy:
we put all the list code in a package called "list", and we declare the fields
of DLi st Node protected--except the "iten field, which is public. Applications
can't access the "prev" or "next" fields of a DListNode, so they can't violate
any List invariants.

1" ve chosen to make the "itenl' field public because it doesn’'t take part in any
invariants, so it does no harmto nmake it public. Applications may read and
change "item as they please. In fact, no method is provided for reading the
"itenmt field indirectly.

Part | (6 points)
l'ist/DList.java contains a skeleton of a doubly-linked list class. Fill in the
met hod i npl enent ati ons.

Your DList should be circularly-linked, and its head should be a sentinel node
(which holds no itenm) as described in Lecture 8. An enpty DList is signified
by a sentinel node that points to itself. Some DList nethods return

DLi st Nodes; they shoul d NEVER return the sentinel under any circunstances.
Your DList should satisfy the follow ng invariants.

1) For any DList d, d.head != null.

2) For any DListNode x in a DList, x.next != null.

3) For any DListNode x in a DList, x.prev != null.

4) For any DListNode x in a DList, if x.next ==y, then y.prev == x.

5) For any DListNode x in a DList, if x.prev ==y, then y.next == x.

6) For any DList d, the field d.size is the nunber of DListNodes,
NOT COUNTI NG t he sentinel, that can be accessed fromthe sentinel
(d. head) by a sequence of "next" references.

The DList class includes a newNode() nethod whose sol e purpose is to call the
DLi st Node constructor. All of your nethods that insert a new node should call
this nethod; they should not call the DListNode constructor directly. This
will help mnimze the nunmber of nethods you need to override in Part I11.

Do not change any of the method prototypes; as usual, our test code expects you
to adhere to the interface we provide. Do not change the fields of DList or
DLi st Node. You may add hel per nethods as you pl ease.

You are wel cone to create a main() nmethod with test code. It will not be
graded. W'l be testing your DList class, so you should too.

readme

A quirk of Java is that you nust conpile and run your code from outside the
list/ directory using the follow ng syntax.

javac -g |ist/DListNode.java
java |ist.DLi st Node

Part 1l (1 point)

Qur ADT is not as well protected as we would like. There are several ways by
which a hostile (or stupid) application can corrupt our DList (i.e., nake it
violate an invariant) through nethod calls alone. Describe one in a text file
named GRADER (which will be submitted with your code).

At the top of the GRADER file, include your nane and cs6lb login ID.

Part 111 (3 points)

I npl ement a "l ockabl e" doubly-linked list ADT: a list in which any node can be
"l ocked." A |locked node can never be renoved fromits list. Any attenpt to
renove a | ocked node has no effect (not even an error nessage). Your |ocked
list classes should be in the Iist package al ongside DList and DLi st Node.

First, define a LockDLi stNode class that extends DListNode and carries

i nformati on about whether it has been | ocked. LockDListNodes are not | ocked
when they are first created. Your LockDListNode constructor(s) should call a
DLi st Node constructor to avoid code duplication.

Second, define a LockDList class that extends DLi st and includes an additional
net hod

public void | ockNode(DLi st Node node) { ... }
that permanently | ocks "node".

DO NOT CHANGE THE SI GNATURE OF | ockNode(). The paraneter really is supposed to

be of static type DListNode, not LockDListNode. | chose this signature for the
conveni ence of the users of your LockDList. It saves themthe nuisance of
having to cast every node they want to lock. Instead, it's your job to take

care of that cast (from DLi st Node to LockDLi st Node) .

Your LockDList class should override just enough nethods to ensure that
(1) LockDListNodes are always used in LockDLists (instead of DListNodes), and
(2) 1ocked nodes cannot be renpved froma list.

WARNING To override a nethod, you nust wite a new nethod in the subclass
wi th EXACTLY the sane prototype. You can’'t change a paraneter’s type to a
subclass. Overriding won’t work if you do that.

Your overriding nmethods should include calls to the overridden supercl ass
net hods whenever it nmakes sense to do so. Unnecessary code duplication will be
penal i zed.

Again, | recommend you test your code.

02/18/09
23:01:39

Submi tting your solution

Change (cd) to your hw4 directory, which should contain a file called GRADER
and the list directory. The list directory should contain DList.java,

DLi st Node. j ava, LockDList.java, LockDListNode.java, and any other .java files
requi red by those classes. Make sure your code conpiles and your tests run
correctly on the _lab_ machines just before you submt.

Your GRADER file should include your nanme, |ogin, and answer to Part I1I.

From your hw4 directory, type "subnmit hw4". (Note that "submit" wll not work
if you are inside the list directory!) After submitting, if you realize your
solution is flawed, you may fix it and submit again. You may submit as often
as you like. Only the last version you subnmt before the deadline will be

gr aded.

readme

