01/29/09
03:22:24

CS 61B Homework 2
Due 5pm Wednesday, February 4, 2009

Thi s homewor k assignnment is designed to help you | earn about building Java

cl asses and to observe the deconposition of a conplicated task into sinple
subtasks. This is an individual assignment; you may not share code with other
students.

Copy the Homework 2 directory by doing the follow ng, starting fromyour hone
directory:

cp -r $master/hw hw2 .
cd hw2

Your task is to fill in the inplenentation of a class that manipul ates dates.
Do not use any of the built-in operations on dates provided in the Java library
in your solution. The overall task is broken down into subtasks, which we
suggest you inplement in a bottomup order, so that you can easily test as you
go. The grading test cases will give partial credit for the nobre basic
operations, even if some of the higher |evel operations do not work properly.

Pl ease observe these notes on grading.

1) Your program nust conpile without errors to receive any partial credit on
this assignment. If only one or two of your nethods work, renove any code
that causes problens for "javac" before submitting your solution. However,
don’t renove any of the nethod decl arations that appear in the skeletal
Date.java we give you.

2) W have provided a main nmethod in the Date class that tests some of your
nmet hods. You are wel cone to nodify the main nmethod as you pl ease, perhaps
to add further tests of your own. W will not be grading the main nethod
inthis assignnent. (It does, of course, need to conpile.)

3) You are welconme to add new nethods to the Date class. Since they wll
presumably be "hel pi ng" nethods, declare them "private", not "public".

4) Do not not change the prototype (interface) of any nethod. |f you change
the argunents or the return type, or you change a nethod fromstatic to
non-static, your programwill not conpile with our test cases, and will
not receive credit.

5) Do not have any extraneous print statements in your program including
error nessages. Your program should print out exactly what is specified
and nothing else. (If the comrent prefixing a nmethod does not mention
printing, the nmethod should not print anything.) The only exception here
is the main nethod, which can do anything you |ike.

6) Al though some test cases are provided in the main method, we will add

trickier ones to our grading test suite, which won't be run until _after_
the due date. It is your responsibility to ensure that your nethods work
correctly on any input, not just the test cases. So you mght want to add
nore tests.

The file Date.java contains a skeleton, plus sone test code, for a Date class.
Your job is to fill in the inplenentations of the nethods. W have specified
nost or all of the nmethods you' Il need, including sonme hel per nethods.

I mpl ement the basic hel per nmethods |isted below. These nethods, |ike the main
nmet hod, are declared "static." They are also declared "public" so we can test
them from anot her cl ass.

The Unix "cal" command will rem nd you of the nunber of days in each nonth.
February contains 28 days nost years, but 29 days during a leap year. A leap
year is any year divisible by 4, except that a year divisible by 100 is not a
| eap year, except that a year divisible by 400 is a | eap year after all.
Hence, 1800 and 1900 are not |eap years, but 1600 and 2000 are. (Inplenent
this rule in your programeven if you know infornation to the contrary.)

readme

/** Checks whether the given year is a | eap year.

* @eturn true if and only if the input year is a |leap year.
*/

public static bool ean isLeapYear(int year) {

}

/** Returns the nunber of days in a given nonth.

* @aramnmonth is a nonth, nunbered in the range 1...12.

* @aramyear is the year in question, with no digits omtted.
* @eturn the nunber of days in the given nonth.

*/

public static int dayslnMnth(int nonth, int year) {

}

/** Checks whether the given date is valid.

* @eturn true if and only if nonth/day/year constitute a valid date.
*

* Years prior to AD. 1 are NOT valid.

*/

public static bool ean isValidDate(int nonth, int day, int year) {

Define the internal state that a "Date" object needs to have by declaring sone
data fields (all private) within the Date class. Define the basic constructor
specified below. A Date should be constructed only if the date is valid. If

a caller attenpts to construct an invalid date, the programshould halt after

printing an error nessage of your choosing. To halt the program include the

l'i ne:

System exit(0);

/** Constructs a date with the given nonth, day and year. If the date is
* not valid, the entire programwill halt with an error nessage.

* @aramnonth is a nonth, nunbered in the range 1...12.

* @aramday is between 1 and the nunber of days in the given nonth.

* @aramyear is the year in question, with no digits omtted.

*/

public Date(int nmonth, int day, int year) {

}

/** Returns a string representation of this date in the form nonth/day/year.
* The nonth, day, and year are printed in full as integers; for exanple,
* 12/7/ 2006 or 3/21/407.

* @eturn a String representation of this date.

*/

public String toString() {

}

01/29/09
03:22:24

I npl ement the follow ng nethods.

/** Determ nes whether this Date is before the Date d.
* @eturn true if and only if this Date is before d.
*

/
publ i c bool ean i sBefore(Date d) {

}

/** Determ nes whether this Date is after the Date d.
* @eturn true if and only if this Date is after d.
*/

public boolean isAfter(Date d) {

}

/** Returns the nunber of this Date in the year.
* @eturn a nunber n in the range 1...366, inclusive, such that this Date
* is the nth day of its year. (366 is only used for Decenber 31 in a |eap

* year.)

*/
public int daylnYear() {
}

/** Determines the difference in days between d and this Date. For exanple,

* if this Date is 12/15/1997 and d is 12/14/1997, the difference is 1.

* |f this Date occurs before d, the result is negative.

* @eturn the difference in days between d and this date.

*/

public int difference(Date d) {

}
H nt 1: once you' ve inplenmented isBefore(), it’s possible to inplenent
isAfter() with just one line of code. You need to think carefully, though:

“return !isBefore(d)" is incorrect. Can you see why?

Hnt 2: all the methods in the Date class can read all the private fields in
any Date object (not just "this" Date object).

readme

I npl ement the final mssing piece of your class, a second constructor that
takes a String argunent.

/** Constructs a Date object corresponding to the given string.

* @arams should be a string of the form"nonth/day/year" where nonth nust
* be one or two digits, day nust be one or two digits, and year nust be

* between 1 and 4 digits. |If s does not match these requirenents or is not
* avalid date, the programhalts with an error nessage of your choice.

*/

public Date(String s) {

}

We're flexible on how you handl e dates that are "alnbst correct”. For exanple,
the string " 11/4/2010 AD' is technically not valid because of the spaces and
letters, but it’'s your choice whether you treat it the same as "11/4/2010" or
halt with an error nmessage. W don't want to be pedantic about this. But your
Date constructor definitely should not accept "11/31/2009" or "12/4" or

"hey dude".

Hint: wuse the online Java APl to faniliarize yourself with all the nethods
available to you in the String class.

Submi tting your solution

Change (cd) to your hw2 directory, which should contain Date.java. Make sure
your code conpiles and your tests run correctly on the _lab_ machi nes just
bef ore you submit.

From your hw2 directory, type "submit hw2". After subnmitting, if you realize
your solution is flawed, you may fix it and submit again. You may subnit as
often as you like. Only the last version you subnmt before the deadline wll
be graded.

