04/29/09
23:41:36

CS 61B Homewor k 10
Due 5pm Wednesday, May 6, 2009

This homework will give you practice inplenmenting linear-tinme sorting
algorithms. This is an individual assignment; you may not share code with
ot her students.

Copy the Homework 10 directory by doing the follow ng, starting fromyour hone
directory.

cp -r $master/hw hwiO .

Your job is to inplenent counting sort and radix sort for arrays of ints. All
your code should appear in the file sort/Sorts.java. A skeleton is provided
for you.

| npl ement counting sort on int arrays.
public static int[] countingSort(int[] keys, int whichDigit);

The nost inportant difference between the counting sort you will inplenent here
and the one presented in lecture is that this counting sort uses one base-16
digit in each int as its sort key, and ignores all the other digits. That way,
your counting sort can be used as one pass of radix sort. (Mke sure that your
counting sort is stablel)

The paraneter "whichDigit" tells the nethod which base-16 digit of each int to
use as a sort key. |If whichDigit is zero, sort on the |east significant (ones)
digit; if whichDigit is one, sort on the second | east significant (sixteens)
digit; and so on. Anint is 32 bits long, so it has eight digits of four bits
each.

The high bit of each int is a sign bit. To keep life sinple, we will assune
that all the nunbers are positive, so the high bit is always zero. Don't try
to create an int whose nost significant base-16 digit is greater than 7.

Hexadeci mal Primer: Hexadecimal is a way of expressing a nunber in base-16.
We use the usual digits 0...9, plus the additional digits a...f to represent
ten through fifteen. You can convert back and forth between an int and

a hexadecimal string by using the Integer.toString(int, int) and

I nteger.parselnt(String, int) nethods. (Look themup in the online Java API,
and/or | ook at how they are used in Sorts.java.)

One of the best reasons to use base-16 digits is because they can be extracted
very quickly froma key by using bit operations. This neans that, in your
countingSort nethod, you should use bit operations to extract the digits, and
not throw away the speed advantage by using sonething silly like toString() to
extract each digit. The bit operation that will serve you best is Java's "&"
operator. If you wite "x & 15", it masks the int x against the bit pattern
"0000...00001111", so only the least significant base-16 digit survives, and
the others are set to zero. This allows you to extract the |east significant
digit.

Want to extract a different digit? Divide the int by some appropriate divisor
first. Recall that integer division always rounds down, so you can elimnate
|l oworder digits this way if you choose the right divisor. This nbves the
digit you' re looking for down to the |east significant position, so you can
mask it against a 15. (For faster performance, shift the bits to the right,
if you know how to do so.)

Warning: Do not confuse & with &. && will not do bit masking.

readme

I npl ement radix sort on int arrays. Your radix sort should use your counting
sort to do each pass.

public static int[] radixSort(int[] keys);

A snall test is provided in Sorts.nain, which you can run by typing
"java sort.Sorts". W recomrend you add nore test code of your own.
Your main nmethod and other test code will not be graded.

Submi tting your solution
Make sure your nethods countingSort and radi xSort do NOT print anything to the
screen! (Your nain nethod can print anything it likes.)

Change (cd) to your hwiO directory, which should contain the sort directory.
The sort directory should contain Sorts.java. Mke sure your honework conpiles
and runs on the _lab_ machines just before you submt.

From your hwlO directory, type "submt hwl0". (Note that "submit" will not
work if you are inside the sort directory!) After submitting, if you realize
your solution is flawed, you nmay fix it and subnit again. You nay subnit as
often as you like. Only the last version you subnit before the deadline wll
be graded.

