01/31/05
21:16:14

CS 61B Lab 2
February 1, 2005

Goal: This lab will give you experience with defining and using cl asses and
fields, and with conditionals and recursive functions.

Copy the Lab 2 directory by starting fromyour hone directory and typing:
nkdir |ab2
cd | ab2
cp $naster/lab/l ab2/*

Getting Started

Read the Fraction.java class into emacs and conpile it using CGx Ce, filling
in the coonmand javac -g Fraction.java. The program should conpile wi thout
errors. In a shell window, fromyour |ab2 directory, run the program using
"java Fraction". The programshould run, although it will print fractions in

a non-reduced form |ike 12/20.

Part 1: Constructors (1 point)

Look at the nmain nmethod in the Fraction class, which declares and constructs
four Fraction objects. Four different constructors are used, each with

di fferent argunents.

Fraction fO
Fraction f1
Fraction f2
Fraction f3

new Fraction();

new Fraction(3);

new Fraction(12, 20);
new Fraction(f2);

Look at the inplenmentations of the constructors. The two-argunment constructor
is straightforward. It assigns the paraneters to the nunerator and denoni nator
fields. The one-argunent constructor uses some new syntax:

this(n, 1);
The effect of this statement is to call the two-argunent constructor, passing n
and 1 as argunments. "this" is a keyword in Java, which normally refers to the
obj ect on which a nethod is invoked. In a constructor, it can be used (as

above) to invoke a different constructor.
We coul d have witten the one-argunent constructor thusly:

public Fraction(int n) {
if (n<0) {
Systemout.println("Fatal error: Negative nunerator.");
System exit(0);

nunber Of Fract i ons++;
nunerator = n;
denomi nator = 1;

}

Wiy call the two-argunment constructor instead? The reason is one of good
software engineering: by having three of the constructors call the fourth, we
have reduced duplicate code--nanely, the error-checking code and fraction
counting code in the first constructor. By reusing code this way, the program
is shorter, and nore inportantly, if we later find a bug in the constructor, we
may only need to fix the first constructor to fix all of them (This principle
applies to any nethods, not just constructors.) In your own programs, if you
find yourself copying several lines of code for reuse, it is usually wse to
put the common code into a new shared nethod.

The no-argunment constructor does not use the good style just described. Mdify
it to call the two-argunment constructor. Then, fill in the fourth constructor

readme

so that it uses the good style and correctly duplicates the input Fraction (it
does neither now). Your TA or lab assistant will ask to see your constructors
when you get checked of f.

Part 11: Using Objects (1 point)

Further on in the nmain nmethod, there are four |lines conmented out. Renopve the
commrent markers and fill in the two m ssing expressions so that sumOfTwo is the
sumof f1 and f2, and sunOf Three is the sumof f0, f1, and f2.

Part 111: Defining Oasses (1 point)

The changeNunerator and fracs nmethods don’t work. Fix them You may NOT
change their signatures. Each fix should require the addition of just one
word. These changes may or may not be in the nethods thensel ves.

Part 1V: Conditionals and Recursive Functions (1 point)

The main nmethod prints the Fractions thusly:

Systemout.println("The fraction fO is " + f0.toString());
Systemout.println("The fraction f1is " + f1); // toString is inplicit
Systemout.println("The fraction f2 is " + f2);

Systemout.println("The fraction f3 is " + f3 + ", which should equal f2");

How does Java know what to do when printing the fractions f1, f2, and f3? |In
the case of f0O, we have invoked the toString nmethod, which you should |ook at.

In the next three lines, we are asking Java to concatenate a Fraction to the
end of a String. A Fraction is not a String, so can’t be concatenated
directly, but Java cleverly looks for a nethod called toString to convert each
fraction to a string. This is standard in Java: any object can have a
toString method, and if it does, that method will be automatically called when
appropriate.

As we noted earlier, the toString nethod prints a Fraction in non-reduced form
Examine the code in the toString method. It is calling another nethod called
gcd that computes the greatest common divisor (GCD) of two positive integers.
If this nmethod worked correctly, toString would print Fractions in reduced
form instead, gcd always returns 1. Rewite the body of gcd so that it is a
recursive function that correctly conputes the GCD. Reconpile and run your
progr am

Here is a recursive GCD function witten in Schene. a and b nust be
non- negati ve.

(define (gcd a b)
(if (=b O
a
(gcd b (remainder a b))))

The "remainder" operation in Java is called "md" for "nodular arithnetic" and
iswitten "a %b".

01/31/05
21:16:14

Check- of f

1 point:

Show the TA or |ab assistant your last two Fraction constructors.
Run your programto denonstrate that f2 and f3 are initally equal.
Denonstrate that your programcorrectly conputes the two sunms of
fractions.

Denonstrate that your program changes f3 to 7/20, and prints the
correct nunber of Fraction objects. Tell the TA or |ab assistant
what two words you had to add to fix these bugs.

Denonstrate your programthat correctly conputes GCDs and fractions
in reduced form

readme

