

Moving from CS 61A Scheme
to CS 61B Java

Introduction

Java is an object-oriented language. This document describes some of the differ-
ences between object-oriented programming in Scheme (which we hope you remember
from CS 61A) and programming in Java.

An object-oriented program is a collection of agents, or objects, that pass infor-
mation back and forth to get work accomplished. A class is a type of object; conversely,
an object is an instance of a class. A class packages the data of an object with the things
it can do, its methods. Methods are basically functions. A Java program is a collection of
classes. There are no free-floating variables or functions outside of classes, as one might
have in Scheme or some other language.

How this document is organized

This document starts by briefly comparing the ways Scheme and Java programs
are run. Then it gives Scheme and Java versions of the bank account example program
from the CS 61A course material, explaining how one would run the Java program.
Next, the Scheme and Java programs are compared: first at a high level, identifying
components in one program and not in the other, then in more detail, considering dif-
ferences in syntax, punctuation, and so forth. The document continues with an expla-
nation of other differences between Scheme and Java, and suggestions on how to
organize a Java program. It concludes with a brief comparison of uses of recursion and
iteration in the two languages.

Running a Java program

Scheme provides a “read-evaluate-print” loop that lets the programmer run a
program or parts of a program interactively. To evaluate (+ 3 4) in Scheme, the pro-
grammer types the expression to the interpreter, which computes and prints 7.

In contrast, one prepares a Java program with an editor, compiles (translates) it
into a form much like machine language, then runs the result. Also, since the program-
ming environment isn’t printing the value of each expression typed by the user, Java
functions will typically print information on their own and may ask for data from the
user as well. A Java program that computes the sum of 3 and 4 will contain a class; one
of this class’s methods will print the result of the addition. The program must be com-
piled and run to produce the desired output of 7.

Scheme allows this sort of use too. For example, one can print from within a
Scheme function using the write or display functions, and most Scheme programs are
1

);

s

prepared in an editor and loaded into the interpreter using the load function. With
Java, however, one doesn’t have a choice.

Files that contain Java code must have names that end with the characters
“.java”. Typically, each file contains a single class declaration, and by convention the file
name is the same as the class name with “.java” added.

An example class: a bank account

Given below are Scheme and Java versions of a bank account class declaration
and use. The Scheme version appears on page 3 of “Object-Oriented Programming—
Above-the-Line View” in the CS 61A course material.

Scheme Java

(define-class (account balance)

(method (deposit amount)
(set! balance

(+ amount balance))
balance)

(method (withdraw amount)
(if (< balance amount)

"Not enough funds"
(begin

(set! balance
(- balance amount))

balance))))

(define mike-account
(instantiate account 1000))

(ask mike-account 'balance)
(ask mike-account 'deposit 100)
(ask mike-account 'withdraw 200)

class Account {

public Account (int balance) {
myBalance = balance;

}

public void deposit (int amount) {
myBalance = myBalance + amount;

}

public void withdraw (int amount) {
if (myBalance < amount) {

System.err.println (" Not enough funds"
} else {

myBalance = myBalance - amount;
}

}

public int balance () {
return myBalance;

}

public static void main (String[] args) {
Account mike;
mike = new Account (1000);
System.out.println (mike.balance ());
mike.deposit (100);
System.out.println (mike.balance ());
mike.withdraw (200);
System.out.println (mike.balance ());

}

private int myBalance; // balance in cent
};
2

If a file named account.java contained the Java class definition above, one
would compile it by typing a command that runs the Java compiler javac:

javac account.java

This would create a file named Account.class that contains the compiled version of
the program. One would then run this program by typing the java command with the
name of the class as argument:

java Account

The first argument to the java command is the name of a class that contains a method
named main; subsequent arguments to the java command are passed to the main
method.

High-level comparison

Before moving to the details of the Java code, we first compare the structure of
the two versions. In the Scheme class, there are two methods, one named deposit and
the other withdraw. The Java class has those two, plus three more.

• One is a constructor method, called to initialize an account object. It has the
same name as the class. The constructor is similar to the initialize function
associated with a Scheme class.

• Another is a method named main. The class whose name is given in the java
command that runs the program must have a method named main whose
header is as follows.

public static void main (String[] args)

One may pass arguments to the running program—the “args” in the method
header—by typing them after the class name on the java command line.

• A third is an access method that returns the balance. Such a method is provided
automatically by the Scheme object-oriented programming facility; in Java, the
programmer provides it.

Not all these methods are necessary, though it is common for a class to have at least a
constructor and a main method with which the class may be tested.

One other structural difference is the last thing in the Java class, namely the
declaration of the variable myBalance. In Scheme, the scope of the parameter balance
includes the withdraw and deposit functions, so those two functions may use and
update it. In Java, functions may not be nested, so an additional variable is needed to
store the object’s local state. A CS 61B convention is to use names that start with “my”
for local state variables.
3

Syntax comparison

In Scheme, essentially everything is an application of a function or a special
form. These applications are combined by composition. Punctuation—that is, parenthe-
ses—delimit the function applications and their arguments. The syntax of Java is more
complicated; a Java program includes not only function applications, but also state-
ments (executed in sequence for their side effects, not their return values) and declara-
tions (which convey information to the compiler). These are all punctuated differently.

Method definition

Let’s look in particular at how a method is specified. Both in Scheme and in
Java, a method is essentially a function. It has a header that specifies the function name
and its parameters. It also has a body. In Scheme, these are all set up using parentheses:

(method (method-name parameter-name ...)
expression

...)

In Java, the method header looks similar; there is no leading parenthesis, but the name
precedes a parenthesized list of parameter information. The body, however, is sur-
rounded by braces (“{” and “}”), and each statement in the body ends with a semicolon.
In a method having more than one parameter, information for adjacent parameters
would be separated by a comma.

modifiers return-type method-name (parameter-info , ...) {
statement ;

...
}

(In general, braces are used to surround a block, a sequence of statements to be treated
as a single unit.) The more extensive set of punctuation was incorporated in Java
mainly to preserve consistency with languages such as C; however, it also allows some-
what more informative syntax error messages.

A common conventionis to start names of methods with a lower-case letter.
Where a method name is a combination of two or more words, the words are run
together in the name with words after the first being capitalized, e.g. removeLargest-
Item.

Types

Another reason for the more complicated syntax in Java is the need to provide
type information. In Scheme, a variable or parameter can be associated with any kind of
data—list, number, symbol, or whatever. In Java, programmers must specify the type
of each piece of information and of the return value of each function. The intent is to
4

allow the compiler to detect errors resulting from assigning the wrong type of value to a
variable. Four types appear in the bank account example.

A name is associated with a type (and the appropriate amount of memory allo-
cated) by means of a declaration. Examples in the bank account code are the lines

Account mike;

in the main method and

private int myBalance

at the end of the class definition.

By common convention, names of classes (and only names of classes) start with
an upper-case letter. Where a class name is a combination of two or more words, the
words are run together in the name with all the words being capitalized, e.g. Checking-
Account.

Method calling

A third syntactic difference between Scheme and Java is the different notation
for calling a method. In Scheme, it’s

(ask object method-name argument ...)

In Java, it’s

object.method-name (argument ...)

that is, the object name followed by a dot followed by the method name. Thus the
Scheme call

(ask mike-account 'deposit 100)

would be coded in Java as

mike.deposit (100);

Occasionally a method will call one of the object’s own methods. In Scheme, this
is done with the expression

type description

int Variables of type int represent integer values between –231 and +231–1.

void A function whose return type is void doesn’t return any value at all; it is used only
for its side effects.

String [] String is a class provided in one of the Java class libraries. Variables of type String
represent character strings. Brackets indicate a type that represents an array, an
indexable sequence of elements. Here, an array of strings is used.

Account Variables of type Account represent bank accounts.
5

(ask self method-name ...)

The Java counterpart for self is named this. Thus an atmDeposit method that results
in a $.50 usage fee might be coded as

public void atmDeposit (int amount) {
myBalance = myBalance + amount;
this.withdraw (50);

}

The this object need not be specified in such a situation, however, so the method call
may be written as

withdraw (50);

Some functions in Java are represented by infix operators that appear between
their operands, as in algebraic expressions. Examples include

the + and – arithmetic operators, named the same as in Scheme;
the < and > comparison operators, also named the same as their Scheme coun-
terparts;
the == comparison operator, the counterpart of = in Scheme;
the && and || logical operators, the counterparts of and and or in Scheme; and
the = assignment operator, similar to set! in Scheme.

The parentheses in Scheme expressions determine the order in which functions
are applied. In Java, however, one may write complicated expressions without paren-
theses, for example,

a + b > 27 && b + c < 35 || a < 3

Possible ambiguities are resolved by assigning each operator a precedence that specifies
how much “stronger” it is than other operators. The above expression, fully parenthe-
sized, would be

((((a + b) > 27) && ((b + c) < 35)) || (a < 3))

Comments

Comments in Scheme start with a semicolon. There are two kinds of comments
in Java: one-line comments that start with // (two slashes), and multi-line comments
that start with /* (slash-star) and end with */ (star-slash).

Case sensitivity

Unlike in Scheme, names in Java are case-sensitive; thus the names MIKE and
mike are different. Java names may contain only letters, digits, and the characters “$”
and “_” (underscore), and may not start with a digit.

Typical conventions for use of upper- and lower-case letters in Java programs
are as follows. Class names are capitalized, with words within the name also starting
with a capital letter (example: BankAccount). Names of constants—variables whose
6

values don’t change during the execution of a program—are often typed with all upper-
case letters (example: MAXLENGTH). Other identifiers start with a lower-case letter,
with upper-case letters used to begin each word within the identifier (example: remove-
LargestItem).

Other aspects of values, objects, and methods

Primitive types and references

Java’s int type is a primitive type, since an int value is not composed of any other
values. The other primitive types are bool—a type for representing true or false val-
ues—and several other types for representing numbers. Primitive values are Java’s
counterpart to Scheme atoms.

In Scheme, lists are represented by pointers. Similarly in Java, objects and col-
lections of data are also represented by pointers, referred to as references; the corre-
sponding types are reference types. Java arguments are passed to methods by value, in
exactly the same way as arguments are passed to Scheme functions. Thus the effect of
changing an argument of a primitive type within a method is confined to the method
itself, while a change to an object or collection whose reference is passed as an argu-
ment will stay changed when the method is exited.

Object instantiation

An object is instantiated in Scheme with the instantiate function and in Java
with the new operator. In the bank account example, the expression

(define mike-account (instantiate account 1000))

did double duty; it added the name mike-account to the relevant environment and
associated it with the account object. The Java counterpart is

Account mike = new Account (1000);

or, split into its component parts,

Account mike;
mike = new Account (1000);

The new operator returns a reference to the constructed object.

Return values

The value returned by a Scheme function is specified implicitly; it’s the value of
the last expression in the body. The value returned by a Java method is specified explic-
itly by using the return statement, as in the balance method in the Account class.
Thus every function whose type is not void must contain at least one return statement
with an argument expression of the correct type. The return statement without an
7

argument is used in void functions; an implicit return appears at the end of each void
function.

Names and accessibility

The keywords public and private specify who can call a method or reference a
variable. A public method may be called from a method in any other class; a private
method may be called only from methods of the same class. Methods defined using the
method special form in Scheme are all public; to get the effect of a private method in
Scheme, one would merely define it as a regular function internal to the class definition.

The scope of a variable declaration in Java is the rest of the block that contains
the declaration (that is, up to its closing brace).

In Scheme, there is a single “name space” for functions and variables. For exam-
ple, the definition of a variable named list makes the builtin function list inaccessible,
and the definition of one function named foo replaces any earlier definition of that
function. In Java, however, function names are separate from variable names, so you
may have a method and a variable with the same name.

Also, method names may be overloaded—that is, there may be two different
methods with the same name. They must, however, have a different number of param-
eters or parameters of different types. An example where overloading might be useful is
a class that represents a length expressed in feet and inches. One might code two ver-
sions of this class’s “add” method, one taking one argument representing some number
of inches, the other taking two arguments that represent feet and inches. (One may not
have two methods that have a single integer parameter, say, one having an “inch”
parameter and the other having a “foot” parameter. The reason is that if you try to call
add(3), the Java compiler wouldn’t know which one to use.)

Methods and variables declared as static are common to all the objects of a
class. (Static variables are called “class variables” in the CS 61A course material.) A
method (e.g. main) must be declared as static if it’s called before any objects of the cor-
responding class have been instantiated.

Packages of classes

A Java programming environment provides numerous packages of predefined
classes and objects. A programmer might refer to one of these classes by its fully quali-
fied name, for example, java.math.BigInteger, or use the import statement in order to
use only the class name:

import java.math.*;
8

How to write a Java program

Moving from Scheme to Java involves mastering a lot of detail, some of which
has been described above. One way of organizing this detail is to put it into the context
of building a Java program. Here are some suggestions.

1. Figure out what objects will be involved in the program, and how they will inter-
act. (Some objects will model agents or things in the real world, like bank
accounts, workers, teaching assistants, or singers; others implement program-
ming services, such as a collection of data, a source of input, or a provider of
computational routines.) It may help for you and a friend to act out the interac-
tions, with one of you playing one object and one of you playing another.

One aid to design is to recognize object patterns. One such pattern that appears
often in CS 61B is that of a container. Its methods include the following:

initialize;
insert an element;
remove an element;
determine if a given value is an element;
the main method (for testing).

2. Create a framework for each class (in a file of its own). The framework starts
with the line:

class class-name {

It ends with a single right brace:

}

In between are frameworks for the methods:

modifiers return-type method-name (argument-info) {
}

One of the methods is main. (It’s not absolutely necessary but is useful for test-
ing the class methods.)

public static void main (String[] args) {
}

For example, a framework for the container class mentioned above would be

class ContainerFor61B {

public ContainerFor61B () {
}

public void Insert (element e) {
}

public void Remove (element e) {
}

9

public bool Contains (element e) {
}

public static void main (String[] args) {
}

}

Most methods are public; most data variables are private. Exceptions are private
methods that are helper functions to some other public methods, but are not
needed outside the class.

3. Fill in the method bodies and add private data.

Recursion vs. iteration

Programming in CS 61A involved a lot of recursive programming; three recur-
sive versions of the factorial function from Abelson and Sussman appear below.

Section 1.2.1

(define (factorial1 n)
(if (= n 1) 1 (* n (factorial1 (- n 1))))

Section 1.2.1

(define (factorial2 n)
(define (iter product counter)

(if (> counter n) product
(iter (* counter product) (+ counter 1))))

(iter 1 1))

Section 3.1.3

(define (factorial3 n)
(let ((product 1) (counter 1))

(define (iter)
(if (> counter n) product

(begin
(set! product (* counter product))
(set! counter (+ counter 1))
(iter))))

(iter)))

Given below are the Java counterparts.

class Example {

public static int factorial1 (int n) {
if (n == 1) {

return 1;
} else {

return n * factorial1 (n-1);
}

}

public static int factorial2 (int n) {
return iter (1, 1, n);
10

}

private static int iter (int product, int counter, int n) {
if (counter > n) {

return product;
} else {

return iter (counter*product, counter+1, n);
}

}

public static int factorial3 (int n) {
int product=1;
for (int counter=1; counter<=n; counter=counter+1) {

product = counter * product;
}
return product;

}

...
}

The imperative style of coding—represented by factorial3—is more common in
Java. The examples above, however, show that recursion may also be easily used in
Java.
11

	Moving from CS 61A Scheme to CS 61B Java
	Introduction
	How this document is organized
	Running a Java program
	An example class: a bank account
	High-level comparison
	Syntax comparison
	Method definition
	Types
	Method calling
	Comments
	Case sensitivity

	Other aspects of values, objects, and methods
	Primitive types and references
	Object instantiation
	Return values
	Names and accessibility
	Packages of classes

	How to write a Java program
	Recursion vs. iteration

