
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 1998

Numbers

1 Integers

The Scheme language has a notion of integer data type that is particularly convenient for the
programmer: Scheme integers correspond directly to mathematical integers and there are stan-
dard functions that correspond to the standard arithmetic operations on mathematical integers.
While convenient for the programmer, this causes headaches for those who have to implement
the language. Computer hardware has no built-in data type that corresponds directly to the math-
ematical integers, and the language implementor must build such a type out of more primitive
components.

Historically, therefore, most “traditional” programming languages don’t provide full mathe-
matical integers either, but instead give programmers something that corresponds to the hardware’s
built-in data types. As a result, what passes for integer arithmetic in these languages is at least
quite fast. What I call “traditional” languages include FORTRAN, the Algol dialects, Pascal, C,
C++, Java, Basic, and many others. Here, I will discuss the integer types provided by Java, which
is in many ways typical.

2 Modular arithmetic

The integral values in Java differ from the mathematical integers in that they come from a finite
set (or domain). Specifically, the five integer types have the ranges shown in Table 1. With a
limited range, the question that naturally arises is what happens when an arithmetic result falls
outside this range (overflows). For example, what is the result of 1000000*10000, in which
the two operands are both of type int?

105

Numbers 106

Type Modulus Minimum Maximum
long 264 263 263 1

(9223372036854775808) (9223372036854775807)
int 232 231 231 1

(2147483648) (2147483647)
short 216 215 215 1

(32768) (32767)
byte 28 27 27 1

(128) (127)
char 216 0 216 1

0 (65535)

Table 1: Ranges of values of Java integral types. Values of a type represented with bits are
computed modulo 2 (the “Modulus” column).

Computer hardware, in fact, answers this question in various ways, and as a result, traditional
languages prior to Java tended to finesse this question, saying that operations producing an out-
of-range result were “erroneous,” or had “undefined” or “implementation-dependent” results. In
fact, they also tended to finesse the question of the range of various integer types; in standard
C, for example, the type int has at least the range of Java’s type short, but may have more.
To do otherwise than this could make programs slower on some machines than they would be if
the language allowed compilers more choice in what results to produce. The designers of Java,
however, decided to ignore any possible speed penalty in order to avoid the substantial hassles
caused by the fact that differences in the behavior of integers from one machine to another
complicate the problem of writing programs that run on more than one type of machine.

Java solves the overflow question by saying that integer arithmetic is modular. In mathematics,
we say that two numbers are identical “modulo ” if they differ by a multiple of :

mod iff there is an integer, , such that

The numeric types in Java are all computed modulo some power of 2. Thus, the type short
is computed modulo 216. Any attempt to convert an integral value, , to type short gives a
value that is equal to modulo 216. There is an infinity of such values; the one chosen is the one
that lies between 215 and 215 1, inclusive. For example, converting the values 256, 0, and

1000 to type short simply give 256, 0, and 1000, while converting 32768 (which is 215) to
type short gives 32768 (because 32768 32768 216) and converting 131073 to type
short gives 1 (because 1 131073 2 216).

It may occur to you from this last example that converting to type short looks like taking
the remainder of when divided by 216 (or, as it would be written in Java, ‘x % 65536’). This
is almost true. In Java, division of integers, as in x / y, is defined to yield the result of the

Numbers 107

mathematical division with the remainder discarded. Thus, in Java, 3 and
3. Remainder on integer operands is then defined by the equation

x%y x - (x/y)*y

where ‘/’ means Java-style division of integers. Thus, in Java, 11%3 11% 3 2 and
11%3 11% 3 2. However, to use an example from above, 32768%65536 is just

32768 back again, and one has to subtract 216 65536 to get the right short value. It is correct
to say that converting to type short is like taking the remainder from dividing by 216 and
subtracting 216 if the result is 215.

For addition, subtraction, and multiplication, it doesn’t matter at what point you perform a
conversion to the type of result you are after. This is an extremely important property of modular
arithmetic. For example, consider the computation527 * 1000 + 600, where the final result
is supposed to be a byte (range 128 to 127, modulo 256 arithmetic). Doing the conversion at
the last moment gives

527 1000 600 527600 16 mod 256;

or we can first convert all the numerals to bytes:

15 24 88 272 16 mod 256;

or we can convert the result of the multiplication first:

527000 600 152 88 240 16 mod 256

We always get the same result in the end.
Unfortunately, this happy property breaks down for division. For example, the result of

converting 256 7 to a byte (36) is not the same as that of converting 0 7 to a byte (0), even
though both 256 and 0 are equivalent as bytes (i.e., modulo 256). Therefore, we have to be a
little bit specific about exactly when conversions happen during the computation of an expression
involving integer quantities. The rule is:

To compute , where is any of the Java operations +, -, *, /, or %, and
and are integer quantities (of type long, int, short, char, or byte),

If either operand has type long, compute the mathematical result converted to
type long.

Otherwise, compute the mathematical result converted to type int.

By “mathematical result,” I mean the result as in normal arithmetic, where ‘/’ is understood to
throw away any remainder.

So, for example, consider

Numbers 108

short x = 32767;
byte y = (byte) (x * x * x / 15);

The notation ‘() ’ is called a cast; it means “ converted to type ” The cast construct
has higher precedence than arithmetic operations, so that (byte)x*x*x would have meant
((byte)x)*x*x. According to the rules, y is computed as

short x = 32767;
byte y = (byte) ((int) ((int) (x*x) * x) / 15);

The computation proceeds:

x*x --> 1073676289
(int) 1073676289 --> 1073676289
1073676289 * x --> 35181150961663
(int) 35181150961663 --> 1073840127
1073840127 / 15 --> 71589341
(byte) 71589341 --> -35

If instead I had written

byte y = (byte) ((long) x * x * x / 15);

it would have been evaluated as

byte y = (byte) ((long) ((long) ((long) x * x) * x) / 15);

which would proceed:

(long) x --> 32767
32767 * x --> 1073676289
(long) 1073676289 --> 1073676289
1073676289 * x --> 35181150961663
(long) 35181150961663 --> 35181150961663
35181150961663 / 15 --> 2345410064110
(byte) 2345410064110 --> -18

3 Why this way?

All these remainders seem rather tedious to us humans, but because of the way our machines
represent integer quantities, they are quite easy for the hardware. Let’s take the type byte
as an example. Typical hardware represents a byte as a number in the range 0–255 that is
equivalent to modulo 256, encoded as an 8-digit number in the binary number system (whose
digits—called bits—are 0 and 1). Thus,

Numbers 109

0 --> 000000002

1 --> 000000012

2 --> 000000102

5 --> 000001012

127 --> 011111112

-128 --> 100000002 (128 mod 256)
-1 --> 111111112 (255 mod 256)

As you can see, all the numbers whose top bit (representing 128) is 1 represent negative numbers;
this bit is therefore called the sign bit. As it turns out, with this representation, taking the
remainder modulo 256 is extremely easy. The largest number representable with eight bits is
255. The ninth bit position (1000000002) represents 256 itself, and all higher bit positions
represent multiples of 256. That is, every multiple of 256 has the form

0 00000000

which means that to compute a result modulo 256 in binary, one simply throws away all but the
last eight bits.

Be careful in this notation about converting to a number format that has more bits. This may
seem odd advice, since when converting (say) bytes (eight bits) to ints (32 bits), the value does
not change. However, the byte representation of -3 is 253, or in binary 111111012, whereas the
int representation of -3 is

111111111111111111111111111111012 4294967293

In converting from a byte to an int, therefore, we duplicate the sign bit to fill in the extra bit
positions (a process called sign extension). Why is this the right thing to do? Well, the negative
quantity as a byte is represented by 28 , since 28 mod 28. As an int, it is
represented by 232 , and

232 232 28 28 111111111111111111111111000000002 28

4 Manipulating bits

One can look at a number as a bunch of bits, as shown in the last section. Java (like C and
C++) provides operators for treating numbers as bits. The bitwise operators—&, |, ˆ, and
˜—all operate by lining up their operands and then performing some operation on each bit or
pair of corresponding bits, according to the following tables:

Operand Bits (,)
Operation 0 0 0 1 1 0 1 1
& (and) 0 0 0 1
| (or) 0 1 1 1
ˆ (xor) 0 1 1 0

Operand Bit
Operation 0 1
˜ (not) 1 0

Numbers 110

The “xor” (exclusive or) operation also serves the purpose of a “not equal” operation: it is 1 if
and only if its operands are not equal.
In addition, the operation x<<N produces the result of multiplying x by 2 (or shifting 0’s in
on the right). x>>>N produces the result of shifting 0’s in on the left, throwing away bits on
the right. Finally, x>>N shifts copies of the sign bit in on the left, throwing away bits on the
right. This has the effect dividing by 2 and rounding down (toward).

For example,

int x = 42; // == 0...0101010 base 2
int y = 7; // == 0...0000111

x & y == 2 // == 0...0000010 | x << 2 == 168 // == 0...10101000
x | y == 47 // == 0...0101111 | x >> 2 == 10 // == 0...00001010
x ˆ y == 45 // == 0...0101101 | ˜y << 2 == -32 // == 1...11100000
˜y == -8 // == 11...111000 | ˜y >> 2 == -2 // == 1...11111110

| ˜y >>> 2 == 230 2
| // == 00111...1110

As you can see, even though these operators manipulate bits, whereas ints are supposed to be
numbers, no conversions are necessary to “turn ints into bits.” This isn’t surprising, given that
the internal representation of an int actually is a collection of bits, and always has been; these
are operations that have been carried over from the world of machine-language programming
into higher-level languages. They have numerous uses; some examples follow.

Packing. Sometimes one wants to save space by packing several small numbers into a single
int. For example, I might know that w, x, and y are each between 0 and 29 1. I can pack
them into a single int with

z = (w<<18) + (x<<9) + y

and from this z, I can extract w, x, and y with

w = z >>> 18; x = (z >>> 9) & 0x1ff; y = z & 0x1ff;

(In this case, the >> operator would work just as well.) Alternatively, you can extract x with

x = (z & 0x3fe00) >>> 9;

Flags. A trick you will sometimes see in C and C++ programs is that of passing a bunch of flags
in a single argument. For example, you might have some kind of formatting function that takes
a number of yes/no options (is the argument hexadecimal, is it signed, is it left or right justified,
etc.). If you define these flags as powers of two:

Numbers 111

final static int HEX = 1, DEC = 2, OCT = 4, UNSIGNED = 8, ...;
...
/** Return a printable rendition of X, formatted according to
* FLAGS. */

String formatNumber(int x, int flags) ...

then the user can write

formatNumber(z, HEX | UNSIGNED);

to indicate that z is supposed to be formatted into an unsigned, hexadecimal number. Inside
formatNumber, you can test for the presence of these flags with conditions like this:

if ((flags & UNSIGNED) != 0) ...

5 Unsigned numbers

The C and C++ languages have explicitly unsigned types corresponding to the signed types int,
short, etc. For simplicity, Java does not. This is because the rules of modular arithmetic
give you the effect of having unsigned numbers, as long as you are careful about a few things:
specifically, conversions, division, comparison, input, and output.

Here, I’ll stick to bytes to keep the numbers small, but the same applies to all the signed
integer types. The byte value 1 has the internal representation 111111112, which can also be
read as 255. So consider, for example, the sum (byte) -1 - (byte) 5. This gives 6,
as you expect, whose representation is 11111010, which may also be read as 250. Or consider
the product (byte) 13 * (byte) 10. When converted to a byte quantity, this gives -126, whose
internal representation is 10000010, which happens also to be 130.

Conversion. If you wish to treat a byte quantity as unsigned, then converting it to a larger
format (one with more bits) requires care. For example, as the discussion above implies, after

byte b = (byte) 250;
int i = b;

the variable i will contain -6, which, if treated as an unsigned int quantity is 232 6, rather
than 250. Therefore, the assignment to i requires a masking operation:

int i = b & 0xff;

The same holds for conversions from byte to the other numeric types, when the quantities are
intended as unsigned, as well conversions from short to int or long, and from int to long.
The type char in Java is already unsigned.

Numbers 112

Comparison. For the signed integer types (byte, short, int, and long), the comparison
operators perform signed comparisons. For example, even if you think of the contents of a byte
variable b as being 250, it will still compare less than 1, since Java treats its value as 6. When
comparing numeric types with fewer bits than int, you can use masking to get rid of the sign
bits, as in

(b & 0xff) >= 1 /* For byte b, or */
(s & 0xffff) >= 1 /* for short s */

Likewise, for ints that are supposed to be unsigned, you can use long:

(i & 0xffffffffL) >= 1

Alas, this approach does not work for unsigned longs, which require some fancy footwork1.
Frankly, it would be a great deal better here for Java to have unsigned integer types and unsigned
comparisons, as do C and C++, but we can still get the same effect. Let’s take the comparison
L0<L1 as a general example. Consider the cases:

If both quantities are positive, then their signed values (i.e., their official Java values) are
the same as the unsigned numbers they represent. In this case, the sign of L0-L1 will be
negative iff L0<L1.

If both quantities are negative, then their signed values (i.e., their official Java values) are
264 less than the unsigned numbers they represent. In this case, the sign of L0-L1will still
be negative iff L0<L1.

If L0 is positive and L1 is negative, then as unsigned numbers L0 is less than 263 and L1
is at least 263, so L0<L1 must be true.

If L0 is negative and L1 is positive, then as unsigned numbers L1 is less than 263 and L0
is at least 263, so L0<L1 must be false.

In other words,

If the sign bits of L0 and L1 are equal, then signed comparison and unsigned comparison
L0<L1 give the same value.

Otherwise, the unsigned comparison L0<L1 is true iff L1 is negative and L0 is non-
negative.

1The following material on unsigned comparison of Javalong values is of little practical importance. Personally,
I’ve never had to do this sort of comparison of unsigned 64-bit quantities. I include it here as a useful exercise
of your understanding of integer number representations and of bit manipulation. Make sure, therefore, that you
understand everything here, even if you can’t see where you’d ever need it.

Numbers 113

The following expressions both yield the value true if and only if L0<L1 when treated as
unsigned quantities. Make sure you understand why each of them works:

((L0 < 0) == (L1 < 0) && L0 < L1) || (L0 >= 0 && L1 < 0)
((˜(L0 ˆ L1) & (L0 - L1)) | (L1 & ˜L0)) < 0

Don’t be thrown off by that strange subexpression (L0<0) == (L1<0). It really is a compar-
ison of two boolean values for equality and it really does work.

Divison. As usual, unsigned division is tricky. For dividing unsigned ints, you can convert to
type long and divide:

((long) x & 0xffffffff) / ((long) y & 0xffffffff)
// What would happen without the "& 0xff..." parts?

but division of long quantities interpreted as unsigned is tricky indeed. I’ll leave that to you.

Input and Output. Java’s standard library does not include any routines for treating numbers
as unsigned, and that includes input and output of unsigned quantities. That is, nothing directly
prints the int value 1 as 4294967295, although you can fake it in this case by converting 1 to
an unsigned long value. Our ucb.io.FormatOutputStream class allows you to output
numbers as unsigned. Format codes %u, %o, and %x all interpret numbers as unsigned (%u is
unsigned decimal).

6 Floating-Point Numbers

Just as it provides general integers, Scheme also provides rational numbers—quotients of two
integers. Just as the manipulation of arbitrarily large integers has performance problems, so too
does the manipulation of what are essentially pairs of arbitrarily large integers. It isn’t necessary,
furthermore, to have large rational numbers to have large integer numerators and denominators.
For example, 8 7 30 is a number approximately equal to 55, but its numerator has 28 digits and
its denominator has 27. Most of the computations we do with such numbers ultimately concern
physical quantities that we can only measure to some finite precision anyway, and the precision
afforded by large numerators and denominators is largely wasted.

Therefore, standard computer systems provide some form of limited-precision rational arith-
metic known as floating-point arithmetic. This may be provided either directly by the hardware
(as on Pentiums, for example), or by means of standard software (as on the older 8086 processors,
for example).

Java has adopted what is called IEEE Standard Binary Floating-Point Arithmetic. The basic
idea behind a floating-point type is to represent only numbers having the form

0 1 1 2

Numbers 114

where is a fixed number, is an integer in some fixed range (the exponent), and the are binary
digits (0 or 1), so that 0 1 1 is a fractional binary number (the significand). In Java, there
are two floating-point types:

float: 24 and 127 128;

double: 53 and 1023 1024.

In addition to these numbers, both float and double contain some additional special values.
Here they are for type double (The type float has similar definitions):

: the results of producing a result that is outside the range of representable values. The
Java constantsDouble.NEGATIVE INFINITY andDouble.POSITIVE INFINITY
have these values. You can test x to see if it is infinite with Double.isInfinite(x).

NaN (Not a Number). There are actually several of these. They represent the results of
undefined expressions, such as 0/0, , or any arithmetic operation on NaNs. One
checks a value x to see if it is not a number with Double.isNaN(x) (you can’t use ==
for this test because a NaN has the odd property that it is not equal, greater than, or less
than any other value, including itself!)

-0.0. Mathematically, 0 0. However, in IEEE floating point, this value is distinct
from 0 (except, confusingly, that 0.0==-0.0). The difference shows up in the fact that
1/-0.0 is negative infinity. We won’t get into why this is a useful thing. Take a course
in numerical analysis if you are curious.

In what follows, I am going to talk only about the type double. This is the default type
for floating-point literals, and in the type commonly used for computation. The type float is
entirely analogous, but since it is not as often used, I will avoid redundancy and not mention
it further. The type float is useful in places where space is at a premium and the necessary
precision is not too high.

The result of any arithmetic operation involving floating-point quantities is rounded to the
nearest representable floating-point number (or to if out of range). In case of ties, where
the unrounded result is exactly halfway between two floating-point numbers, one chooses the
one that gives a last binary digit of 0 (the rule of round to even.) The only exception to this
rule is that conversions of floating-point to integer types, using a cast such as (int) x, always
truncate—that is, round to the number nearest to 0, throwing the fractional part away2.

In principle, I’ve now said all that needs to be said. However, there are many subtle conse-
quences of these rules. You’ll have to take a course in numerical analysis to learn all of them, but
for now, here are a few important points to remember.

2The handling of rounding to integer types is not the IEEE convention; Java inherited it from C and C++.

Numbers 115

6.1 Binary vs. decimal

Computers use binary arithmetic because it leads to simple hardware (i.e., cheaper than using
decimal arithmetic). There is, however, a cost to our intuitions to doing this: although any
fractional binary number can be represented as a decimal fraction, the reverse is not true. For
example, the nearest double value to the decimal fraction 0.1 is

0 1000000000000000055511151231257827021181583404541015625

so when you write the literal0.1, or when you compute1.0/10.0, you actually get the number
above. You’ll see this sometimes when you print things out with a little too much precision. For
example, the nearest double number to 0.123 is

0 12299999999999999822364316

so that if you print this number with the %24.17e format from our library, you’ll see that bunch
of 9s. Fortunately, less precision will get rounded to something reasonable.

6.2 Round-off

For two reasons, the loop

double x; int k
for (x = 0.1, k = 1; x <= N; x += 0.1, k += 1)
{ ... }

will not necessarily execute 10 times. The first reason is the one mentioned above: 0.1 is only
approximately representable. The second is that each addition of this approximation to x may
round. The rounding is sometimes up and sometimes down, but eventually the combined effects
of these two sources of error will cause x to drift away from the mathematical value of 0 1 that
the loop naively suggests. To get the effect that was probably intended for the loop above, you
need something like this:

for (int kx = 1; kx <= 20; k += 1) {
double x = kx * 0.1;
// or double x = (double) kx / 10.0;

(The division is more accurate, but slower). With this loop, the values of x involve only one or
two rounding errors, rather than an ever-increasing number.

On the other hand, since integers up to 253 1 (about 9 1015) are represented exactly,

for (double x = 1.0, k = 1; x <= N; x += 1.0, k += 1) { ... }

Numbers 116

will execute exactly times (if 253) and x and k will always have the same mathematical
value. In general, operations on integers in this range (except, of course, division) give exact
results. If you were doing a computation involving integers having 10–15 decimal digits, and
you were trying to squeeze seconds, floating-point might be the way to go, since for operations
like multiplication and division, it can be faster than integer arithmetic on long values. I doubt
that such an occasion is likely to arise, but you never know.

In fact, with care, you might even use floating-point for financial computations, computed
to the penny (it has been done). I say “with care,” since 0.01 is not exactly representable in
binary. Nevertheless, if you represent quantities in pennies (or possibly mills) instead of in
dollars, you can be sure of the results of additions, subtractions, and multiplications, at least up
to $9,999,999,999,999.99.

When the exponents of results exceed the largest one representable (overflow), the results
are approximated by the appropriate infinity. When the exponents get too small to represent
at all (underflow), the result will be 0. In IEEE (and Java) arithmetic, there is an intermediate
stage called gradual underflow, which occurs when the exponent is at its minimum, and the first
significand bit (0) is 0.

We often describe the rounding properties of IEEE floating-point by saying that results are
correct “to 1/2 unit in the last place (ulp),” because rounding off changes the result by at most
that much. Another, looser characterization is to talk about relative error. The relative-error
bound is pessimistic, but has intuitive advantages. If x and y are two double quantities, then
(in the absence of overflow or any kind of underflow) the computed result, x*y, is related to the
mathematical result, , by

1 where 2 53

and we say that is the relative error (it’s bound is a little larger than 10 16, so you often hear it
said that double-precision floating point gives you something over 15 significant digits). Division
has essentially the same rule.

Addition and subtraction also obey the same form of relative-error rule, but with an interesting
twist: adding two numbers with opposite signs and similar magnitudes (meaning within a factor
of 2 of each other) always gives an exact answer. For example, in the expression 0.1-0.09,
the subtraction itself does not cause any round-off error (why?), but since the two operands are
themselves rounded off, the result is not exactly equal to 0.01. The subtraction of nearly equal
quantities tends to leave behind just the “noise” in the operands (but it gets that noise absolutely
right!).

6.3 Spacing

Unlike integers, floating-point numbers are not evenly spaced throughout their range. Figure 1
illustrates the spacing of simple floating-point numbers near 0 in which the significand has 3 bits

Numbers 117

0 1/16 1/8 1/4

Figure 1: Non-negative 3-bit floating-point numbers near 0, showing how the spacing expands
as the numbers get bigger. Each tick mark represents a floating-point number. Assume that the
minimum exponent is 4, so that the most closely spaced tick marks are 2 6 1 64 apart.

rather than Java’s 24 or 53. Because the numbers get farther apart as their magnitude increases,
the absolute value of any round-off error also increases.

There are numerous pitfalls associated with this fact. For example, many numerical algorithms
require that we repeat some computation until our result is “close enough” to some desired result.
For example, we can compute the square root of a real number by the recurrence

1

2

2

where is the th approximation to . We could decide to stop when the error 2 become
small enough3. If we decided that “small enough” meant, say, “within 0.001,” then for values of

less than 1 we would get very few significant digits of precision and for values of greater than
1013, we’ll never stop. This is one reason relative error, introduced in the last section, is useful;
no matter where you are on the floating-point scale, round off always produces the same relative
error.

6.4 Equality

Many textbooks incorrectly tell you never to compare floating-point numbers for equality, but
rather to check to see whether they are “close” to each other. This is highly misleading advice
(that’s more diplomatic than “wrong,” isn’t it?). It is true that naive uses of == can get you into
trouble; for example, you should not expect that after setting x to 0.0001, x*10000==1.0.
That simply follows from the behavior of round off, as we’ve discussed.

However, one doesn’t have to be naive. First, we’ve seen that (up to a point) double integers
work like ints or longs. Second, IEEE standard arithmetic is designed to behave very well
around many singularities in one’s formulas. For example, suppose that approaches 0 as
approaches 1—for concreteness, suppose that approximates sin —and that we want to
compute 1 , giving it the value 1 when 1. We can write the following computation
in Java:

if (x == 1.0)

3In actual practice, by the way, this convergence test isn’t necessary, since the error in 2 as a function of is
easily predictable for this particular formula.

Numbers 118

return 1.0;
else

return f(x) / (1.0 - x);

and it will always return a normal number (neither NaN nor infinity) when x is close to 1.0.
Despite rounding errors, IEEE arithmetic guarantees that 1.0-x will evaluate to 0 if and only if
x==1.0.

6.5 Closing Words

You will find that on the subject of floating-point arithmetic in general, programmers are rather
superstitious (that is a slightly more diplomatic word than ignorant, isn’t it?). I’d bet that
many would be doubtful about some of the properties I described above (see how many of your
“experienced” acquaintances believe that subtraction of nearly equal quantities introduces no
additional round-off error). To some extent, their superstition may be explained by the fact that
historically, different machines have produced different results given the same operands. Some
rounded their results; others chopped (rounded towards 0); others produced results for some
operations that were off by more than a unit in the last digit; some actually produced results that
could differ from run to run; some had infinities; some threw exceptions on overflow; and so
forth. This all led to the common notion that floating-point values are mysterious, rather fuzzy
quantities with unpredictable behaviors. Although for many calculations, this rather cavalier
approach makes little difference, there are numerous examples where a little more specificity is
very useful. That was a prime motivation for the IEEE standard.

