
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 1998

A Model of Programming Languages

1 Programming Models

One way to find your way around a programming language is to learn individual answers to
numerous questions of the form “How do I get it to do ?”. One can gain a certain amount of
proficiency by mastering the answers to a very large body of such questions, but it is far better
to find a more efficient way, preferably one that will serve to help you find your way around
numerous other programming languages as well.

When I started programming, I first learned a couple of machine languages (for the IBM 1620
and the IBM 1401, if you are curious). This approach had various advantages. I could understand
constructs in higher-level programming languages (which to me at the time meant FORTRAN,
Basic, and Algol 60) by informally translating them into corresponding machine code. The
reasons for certain peculiarities in the design of programming languages (such as why integers
had limited range) became apparent. The relative speeds of alternative codings of a program
fragment became more easily predictable. The weird effects of certain bugs in my programs
became less surprising. In short, I adopted a model for the execution of programs and used it to
explain, understand, and predict my programs’ behavior. This model was by no means precise—I
didn’t actually view my FORTRAN programs as assembly language programs—but it gave me
conceptual signposts to guide my understanding.

Unfortunately, this machine model of programs has its drawbacks. It’s a pretty substantial
jump from some of the constructs used in modern programming languages to their machine-
code realizations. Many of the details of how a computer does things are largely irrelevant to
understanding a program. For example, one usually makes no use of the the fact that a pointer
to a pair in Scheme is actually a number. Another example is that most machines have a finite

Copyright c 1998 by Paul N. Hilfinger. All rights reserved.

97



98 P. N. Hilfinger

set of variables known as registers, which must be used for certain operations, but which are
typically invisible in high-level programming languages. Accordingly, nowadays I usually find
myself using a more abstract conceptual model for most purposes. In this Note, I will present
a model suitable for Scheme, Java, and C++ programs. You will find many similarities to what
you learned in CS 61A (especially the environment models discussed there), and you may wish
to review the textbook and handouts for that course.

2 Overview of the Model

The model presented here consists of the following components:

Values are “what data are made of.” They include, among other things, integers, characters,
booleans (true and false), and pointers (see below). Values, as I use the term, are immutable;
they never change.

Containers contain values and other containers. Their contents (or state) can vary over time as
a result of the execution of a program. Among other things, I use the term to refer to what
are elsewhere called variables and objects. Containers may be simple, meaning that they
contain a single value, or structured, meaning that they contain other containers, which are
identified by names or indices.

Types are, in effect, tags that can be stuck on values and containers like Post-itTM notes. Every
value has such a type, and in Java, so does every container. Types on containers determine
the sorts of values they may contain.

Environments are special containers used by the programming language for its local and global
variables.

The rest of this Note provides detail.

3 Values

One of the first things you’ll find in an official specification of a programming language is a
description of the primitive values supported by that language. In Java, for example, you’ll
find seven kinds of number (types byte, char, short, int, long, float, and double),
booleans, and pointers. In C and C++, you will also find functions (there are functions in Java,
too, but the language doesn’t treat them as it does other values), and in Scheme, you will find
rational numbers and symbols.

The common features of all values in our model are that they have types (see 5) and they
are immutable, that is, they are changeless quantities. We may loosely speak of “changing the
value of x” when we do an assignment such as ‘x = 42’ (or ‘(set! x 42)’) but under our



A Model of Programming Languages 99

model what really happens here is that x denotes a container, and these assignments remove the
previous value from the container and deposit a new one. At first, this may seem to be a confusing,
pedantic distinction, but you should come to see its importance, especially when dealing with
pointers.

A pointer (also known as a reference) is a value that designates a container. When I draw
diagrams of data structures, I will use rectangular boxes to represent containers and arrows to
represent pointers. Two pointer values are the same if they point to the same container. For
example, all of the arrows in Figure 1a represent equal pointer values. As shown there, we
indicate that a container contains a certain pointer value by drawing the pointer’s tail inside the
container.

Certain pointer values are known as null pointers, and point at nothing. In diagrams, I will
represent them with the electrical symbol for ground, or use a box with a diagonal line through it
to indicate a container whose value is a null pointer. Figure 1b illustrates these conventions with
a “free-floating” null pointer value and two containers with a null pointer value.

4 Containers

A container is something that can contain values and other containers. There are two varieties:
simple and structured. A simple container, represented in diagrams as a plain rectangular box,
contains a single value. A structured container contains other containers, each with some kind
of label; it is represented in diagrams by nested boxes, with various abbreviations. The full
diagrammatic form of a structured container consists of a large container box containing zero or
more smaller containers1, each with a label or name, as in Figure 2a. Figures 2b–d show various
alternative depictions that I’ll also use. The inner containers are known as components, elements
(chiefly in arrays), fields, or members.

An array is a kind of container in which the labels on the elements are themselves values
in the programming language—typically integers or tuples of integers. Figure 3 shows various
alternative depictions of a sample array whose elements are labeled by integers and whose
elements are contain numbers.

Value or Object? Sometimes, it is not entirely clear how best to apply the model to a certain
programming language. For example, we model a pair in Scheme as an object containing two
components (car and cdr). The components of the pair have values, but does pair as a whole
have a value? Likewise, can we talk about the value in the arrays in Figure 3, or only about the
values in the individual elements? The answer is a firm “that depends.” We are free to say that
the container in Figure 3a has the value <2.7, 0.18, 2.8>, and that assigning, say, 0 to the
first element of the array replaces its entire contents with the value <0, 0.18, 2.8>. In a

1The case of a structured container with no containers inside it is a bit unusual, I admit, but it does occur.



100 P. N. Hilfinger

X:

(a) All pointers here are equal.

(b) Null pointers.

Figure 1: Diagrammatic representations of pointers.

4N:

prev:

next:

(a)

4N:

prev:

next:

(b)

4

(c)

4

(d)

Figure 2: A structured container, depicted in several different ways. Diagrams (c) and (d) assume that the labels

are known from context.



A Model of Programming Languages 101

2.7

.18

2.8

0:

1:

2:

(a)

2.7

.18

2.8

0

1

2

(b)

2.7

.18

2.8

(c)

2.7 .18 2.8

0 1 2

(d)

2.7 .18 2.8

0 1 2

(e)

2.7 .18 2.8

(f)

Figure 3: Various depictions of one-dimensional array objects. The full diagram, (a), is included for completeness;

it is generally not used for arrays. The diagrams without indices, (c) and (f), assume that the indices are known from

context or are unimportant.

programming language with a lot of functions that deal with entire arrays, this would be useful.
In Java, however, we don’t happen to need the concept of “the value of an array object.”

5 Types

The term “type” has numerous meanings. One may say that a type is a set of values (e.g., “the
type int is the set of all values between 231 and 231 1, inclusive.”) Or we may say that a
type is a programming language construct that defines a set of values and the operations on them.
For the purposes of this model, however, I’m just going to assume that a type is a sort of “tag”
that is attached to values and (possibly) containers. Every value has a unique type. This does
not necessarily reflect reality directly. For example, in typical Java implementations, the value
representing the character ’A’ is indistinguishable from the integer value 65 of type short.
These implementations actually use other means to distinguish the two than putting some kind
of marker on the values. For us programmers, however, this is an invisible detail

Any given programming language provides some particular set of these type tags. Most
provide a way for the programmer to introduce new ones. Few programming languages, however,
provide a direct way to look at the tag on a value (for various reasons, among them the fact that
it might not really be there!).

When containers have tags (they don’t have to; in Scheme, for example, they often don’t),
these tags generally determine the possible values that may be contained. In the simplest case, a
container labeled with typeTmay only contain values of typeT. In Java (and C, C++, FORTRAN,
and numerous other languages), this is the case for all the numeric types. If you want to store a



102 P. N. Hilfinger

value of type short into a container of type int, then you must first coerce (a technical term,
meaning convert) the short into an int. As it happens, that particular operation is often merely
notional; it doesn’t require any machine instructions to perform, but we can still talk that way.

In more complex cases, the type tag on a container may indicate that the values it contains
may one of a whole set of possible types. In this case, we say that the allowable types on values
are subtypes of the container’s type. As a special case, any type is a subtype of itself; say that
one type is a proper subtype of another to mean that it is an unequal subtype.

If type is a subtype of type , and is a value whose type tag is , we say that “ is a ”
or “ is an instance of a .” Unfortunately, this terminology makes it a little difficult to say that

“really is a” a and not one of its proper subtypes, so in this class I’ll say that “the type of
is exactly ” when I want to say that.

All this discussion should make it clear that the tag on a value can differ from the tag on a
container that holds that value. This possibility causes endless confusion, because of the rather
loose terminology that arose in the days before object-oriented programming (it is object-oriented
programming that gives rise to cases where the confusion occurs). For example, the following
program fragment introduces a variable (container) called x and says that the container’s type is
P:

P x;

Programmers are accustomed to speak of “the type of x.” But what does this mean: the type of
the value contained in x or the type of the container itself (i.e., P)?

We will use the phrase “the static type of x” to mean the type of the container, and the phrase
“the dynamic type of x” to mean the type of the value contained in x. This is an extremely
important distinction! Object-oriented programming in C++ or Java will be a source of unending
confusion to you until you understand it.

6 Environments

In order to direct a computer to manipulate something, you have to be able to mention that thing in
your program. Programming languages therefore provide various ways to denote values (literal
constants, such as 42 or ’Q’) and to name containers. Within our model, we can imagine that at
any given time, there is a set of containers, which I will call the current environment, that allows
the program to get at anything it is supposed to be able to reach. In Java (and in most other
languages as well) the current environment cannot itself be named or manipulated directly by a
program; it’s just used whenever the program mentions the name of something that is supposed
to be a container. The containers in this set are called frames. The named component containers
inside them are what we usual call local variables, fields, parameters, and so forth. You have
already seen this concept in CS 61A, and might want to review the material from that course.

When we have to talk about environments, I’ll just use the same container notation used in
previous sections. Occasionally, I will make use of “free-floating” labeled containers, such as to



A Model of Programming Languages 103

indicate that X is a variable, but that it is not important to the discussion what frame it sits in.

7 Important Concepts

This Note summarizes quite a few rather important concepts. Early on in a programming course,
this may all seem rather abstract and vague. Therefore, you will do well to review the concepts in
this Note from time to time throughout the semester. See if you can “attach” them to programming
languages you already know and look out for their appearance while learning Java. Be particularly
sure to understand the following terms and phrases: value, container, simple container, structured
container, component (element), pointer (reference), type, static type, dynamic type, subtype,
proper subtype, “ is a ,” “type of a value,” “ type of a container,” coercion, environment, and
frame.



104 P. N. Hilfinger

42X:


