
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Spring 1998

Using gcc

Gcc is a publicly-available optimizing compiler (translator) for C, C++, Ada 95, and Objective C
that currently runs under various implementations of Unix (plus VMS as well as OS/2 and perhaps
other PC systems) on a variety of processors too numerous to mention. You can find full documentation
on-line under Emacs (use C-h i and select the “GCC” menu option). You don’t need to know much
about it for our purposes. This document is a brief summary.

Running the compiler

You can use gcc both to compile programs into object modules and to link these object modules
together into a single program. It looks at the names of the files you give it to determine what language
they are in and what to do with them. Files of the form name.cc (or name.C) are assumed to be
C++ files and files matching name.o are assumed to be object (i.e., machine-language) files. For
compiling C++ programs, you should use g++, which is basically an alias for gcc that automatically
includes certain libraries that are used in C++, but not C.

To translate a C++ source file, .cc, into a corresponding object file, .o, use the command

g++ -c compile-options .cc

To link one or more object files— 1.o, 2.o, —produced from C++ files into a single executable
file called , use the command.

g++ -o link-options 1.o 2.o ... libraries

(The options and libraries clauses are described below.)
You can bunch these two steps—compilation and linking—into one with the following command.

g++ -o compile-and-link-options 1.cc ... other-libraries

After linking has produced an executable file called , it becomes, in effect, a new Unix command,
which you can run with

./F arguments

where arguments denotes any command-line arguments to the program.

25



26 P. N. Hilfinger

Libraries

A library is a collection of object files that has been grouped together into a single file and indexed.
When the linking command encounters a library in its list of object files to link, it looks to see
if preceding object files contained calls to functions not yet defined that are defined in one of the
library’s object files. When it finds such a function, it then links in the appropriate object file from the
library. One library gets added to the list of libraries automatically, and provides a number of standard
functions common to C++ and C.

Libraries are usually designated with an argument of the form -llibrary-name. In particular, -lm
denotes a library containing various mathematical routines (sine, cosine, arctan, square root, etc.)
They must be listed after the object or source files that contain calls to their functions.

Options

The following compile- and link-options will be of particular interest to us.

-c (Compilation option)
Compile only. Produces .o files from source files without doing any linking.

-Dname=value (Compilation option)
In the program being compiled, define name as if there were a line

#define name value

at the beginning of the program. The ‘=value’ part may be left off, in which case value defaults
to 1.

-o file-name (Link option, usually)
Use file-name as the name of the file produced by g++ (usually, this is an executable file).

-llibrary-name (Link option)
Link in the specified library. See above. (Link option).

-g (Compilation and link option)
Put debugging information for gdb into the object or executable file. Should be specified for
both compilation and linking.

-MM (Compilation option)
Print the header files (other than standard headers) used by each source file in a format acceptable
to make. Don’t produce a .o file or an executable.

-pg (Compilation and link option)
Put profiling instructions for generating profiling information for gprof into the object or
executable file. Should be specified for both compilation or linking. Profiling is the process of
measuring how long various portions of your program take to execute. When you specify -pg,
the resulting executable program, when run, will produce a file of statistics. A program called



Using gcc 27

gprof will then produce a listing from that file telling how much time was spent executing
each function.

-Wall (Compilation option)
Produce warning messages about a number of things that are legal but dubious. I strongly
suggest that you always specify this and that you treat every warning as an error to be fixed1.

1You will see that we often use add the cryptic option -fno-builtins. We do so because of a temporary glitch in
our current version of g++ that otherwise causes it to suppress some warning messages.


