
09/07/10
03:59:03 1readme

                                 CS 61B  Lab 2
                              September 7-8, 2010

Goal:  This lab will give you experience with defining and using classes and
fields, and with conditionals and recursive functions.

Copy the Lab 2 directory by starting from your home directory and typing:

  cp -r ˜cs61b/lab/lab2 .
  cd lab2

Getting Started
---------------
Read the Fraction.java class into emacs and compile it using C-x C-e, filling
in the command javac -g Fraction.java.  The program should compile without
errors.  In a shell window, from your lab2 directory, run the program using
"java Fraction".  The program should run, although it will print fractions in
a non-reduced form, like 12/20.

Part I:  Constructors (1 point)
-------------------------------
Look at the main method in the Fraction class, which declares and constructs
four Fraction objects.  Four different constructors are used, each with
different parameters.

  Fraction f0 = new Fraction();
  Fraction f1 = new Fraction(3);
  Fraction f2 = new Fraction(12, 20);
  Fraction f3 = new Fraction(f2);

Look at the implementations of the constructors.  The two-parameter constructor
is straightforward.  It assigns the parameters to the numerator and denominator
fields.  The constructor with one int parameter uses some new syntax:

  this(n, 1);

The effect of this statement is to call the two-parameter constructor, passing
n and 1 as parameters.  "this" is a keyword in Java, which normally refers to
the object on which a method is invoked.  In a constructor, it can be used (as
above) to invoke a constructor from within another constructor.

We could have written the one-parameter constructor thusly:

  public Fraction(int n) {
    if (n < 0) {
      System.out.println("Fatal error:  Negative numerator.");
      System.exit(0);
    }
    numberOfFractions++;
    numerator = n;
    denominator = 1;
  }

Why call the two-parameter constructor instead?  The reason is one of good
software engineering:  by having three of the constructors call the fourth, we
have reduced duplicate code--namely, the error-checking code and fraction
counting code in the first constructor.  By reusing code this way, the program
is shorter, and more importantly, if we later find a bug in the constructor, we
might only need to fix the first constructor to fix all of them.

This principle applies to methods in general, not just constructors.  In your
own programs, if you find yourself copying several lines of code for reuse, it
is usually wise to put the common code into a new shared method.

The no-parameter constructor does not use the good style just described.

Modify it to call the two-parameter constructor.  Then, fill in the fourth
constructor so that it uses the good style and correctly duplicates the input
Fraction (it does neither now).  Your TA or lab assistant will ask to see your
constructors when you get checked off.

Part II:  Using Objects (1 point)
---------------------------------
Further on in the main method, there are four lines commented out.  Remove the
comment markers and fill in the two missing expressions so that sumOfTwo is the
sum of f1 and f2, and sumOfThree is the sum of f0, f1, and f2.

Part III:  Defining Classes (1 point)
-------------------------------------
The changeNumerator and fracs methods don’t work.  Fix them.  You may NOT
change their signatures.  Each fix should require the addition of just one
word.  These changes may or may not be in the methods themselves.

Part IV:  Conditionals and Recursive Functions (1 point)
--------------------------------------------------------
The main method prints the Fractions thusly:

  System.out.println("The fraction f0 is " + f0.toString()); 
  System.out.println("The fraction f1 is " + f1);   // toString is implicit
  System.out.println("The fraction f2 is " + f2);
  System.out.println("The fraction f3 is " + f3 + ", which should equal f2");

How does Java know what to do when printing the fractions f1, f2, and f3?  In
the case of f0, we have invoked the toString method, which you should look at.

In the next three lines, we are asking Java to concatenate a Fraction to the
end of a String.  A Fraction is not a String, so can’t be concatenated
directly, but Java cleverly looks for a method called toString to convert each
Fraction to a string.  This is standard in Java:  any object can have a
toString method, and if it does, that method will be automatically called when
you concatenate the object to a String.

As we noted earlier, the toString method prints a Fraction in non-reduced form.
Examine the code in the toString method.  It is calling another method called
gcd that computes the greatest common divisor (GCD) of two positive integers.
If this method worked correctly, toString would print Fractions in reduced
form; instead, gcd always returns 1.  Rewrite the body of gcd so that it is a
recursive function that correctly computes the GCD.  Recompile and run your
program.

Here is a recursive GCD function written in Scheme.  a and b must be
non-negative.

  (define (gcd a b)
    (if (= b 0) 
      a
      (gcd b (remainder a b))))

The "remainder" operation in Java is called "mod" for "modular arithmetic" and
is written "a % b".



09/07/10
03:59:03 2readme

Check-off
---------
1 point:  Show the TA or lab assistant your last two Fraction constructors.
          Run your program to demonstrate that f2 and f3 are initially equal.
1 point:  Demonstrate that your program correctly computes the two sums of
          fractions.
1 point:  Demonstrate that your program changes f3 to 7/20, and prints the
          correct number of Fraction objects.  Tell the TA or lab assistant
          what two words you had to add to fix these bugs.
1 point:  Demonstrate your program that correctly computes GCDs and fractions
          in reduced form.


