11/13/06
23:47:28

This is a team project.
of 4 or

Copy the Project
directory.

CS 61B Project 3
Wi ghted Undirected Graphs and M ni num Spanni ng Trees
Due 4pm Friday, Decenber 1, 2006
Forma teamof 2 or 3 people. No teans of 1 or teans
nore are all owed.
3 directory by doing the follow ng, starting fromyour hone
Don’t forget the "-r" switch in the cp command.

cp -r $master/hw pj3 .

A figure acconpanies this "readme" as the files pj3graph.ps (PostScript) or

pj 3gr aph. pdf (PDF).

Par t

Both files are the sane figure.

I: Inplement a Weighted Undirected G aph

I npl ement a wel | -encapsul ated ADT cal | ed WUGraph in a package cal |l ed graph.

A WUG aph represents a wei ghted,
al | oned.

For maxi mum speed, you nust store edges in two data structures:
doubl y-1inked adjacency lists and a hash table.
the follow ng public nmethods in the running tines specified.

undirected graph in which self-edges are
Any obj ect whatsoever can serve as a vertex of a WG aph.

unor der ed
You are expected to support
(You may ignore

hash table resizing time when trying to achieve a specified running tine.)

Bel ow,

|V|] is the nunber of vertices in the graph, and d is the degree of the

vertex in question.

q1) WUGr aph() ; construct a graph having no vertices or edges.
qa1) int vertexCount(); return the nunber of vertices in the graph.
1) int edgeCount(); return the nunber of edges in the graph.
Q| V]) Object[] getVertices(); return an array of all the vertices.
q'1) voi d addVertex(Object); add a vertex to the graph.
q d) voi d renoveVertex(Qbject); renove a vertex fromthe graph.
q1) bool ean isVertex(Object); is this object a vertex of the graph?
a1) int degree(Object); return the degree of a vertex.
q d) Nei ghbor s get Nei ghbor s(Obj ect) ; return the nei ghbors of a vertex.
q1) voi d addEdge(Qbj ect, Cbject, int); add an edge of specified weight.
qa1) voi d renoveEdge(Cbj ect, Object); renove an edge fromthe graph.
q1) bool ean i sEdge(Obj ect, Object); is this edge in the graph?
a1 int weight(Object, Object); return the weight of this edge.
A "nei ghbor" of a vertex is any vertex connected to it by an edge. See the

file graph/ WGraph.java for details of exactly how each of these nethods should
behave.

Here are sonme of the design elenments that will

[1]

hel p achi eve these goal s.

You will need a way to map each vertex provided by the calling application
to internal data structures, such as the adjacency list for the vertex.
The best way to do this is to use a hash table. However, _any_ object may
serve as a vertex, even if it doesn’'t have a hashCode() nethod.

Fortunately, Java has a built-in Hashtable class (with a | ower-case t)
that makes it possible to use any object as a key. By default, Java's
hash tabl es hash the _reference_ to an object. (This is not sonething you
could do yoursel f, because Java will not give you direct access to nmenory
addresses.) This neans that two distinct objects act as different keys,
even if their fields are identical. Further information on Java's
built-in hash tables is included bel ow.

You will need to have an internal
in a WG aph, and you w |l

data structure that represents a vertex
need to use a Hashtable to map a vertex

readme

[2

[3]

[4]

[8]

data structure.
in Q1) tine.

provi ded by the application to the corresponding internal
The Hashtable al so makes it possible to support isVertex()
To support getVertices() in Q(|V]) time, you will need to maintain a |ist
of vertices. To support renoveVertex() in O(d) time, the list of vertices
shoul d be doubly-linked. getVertices() returns the objects that were
provided by the calling application in calls to addVertex(), NOT the

WUG aph’s internal vertex data structure(s). Hence, each internal vertex
representation nust include a reference to the correspondi ng object that
the calling application is using as a vertex.

need to maintain an
removeEdge() in Q1)

To support get Neighbors() in Q(d) tinme, you will
adj acency |ist of edges for each vertex. To support
time, each list of edges nust be doubly-Iinked.
Because a WUGraph is undirected, each edge (u, v) nust appear in two
adj acency lists (unless u ==v): u's and v's. |If we renove u fromthe
graph, we nust renove every edge incident on u fromthe adjacency lists
of u’s neighbors. To support renpveVertex() in Q(d) tine, we cannot wal k
through all these adjacency lists. There are several ways you coul d
obtain O(d) tinme, and you may use any of these options:

[i] Since (u, v) appears in tw lists, we could use two nodes to
represent (u, v); one in u s list, and one in v's list.
Each of these nodes might be called a "hal f-edge,” and each is
the other’s "partner." Each half-edge has forward and backward
references to link it into an adjacency list. Each half-edge
also maintains a reference to its partner. That way, when we
renove u fromthe graph, we can traverse u’'s adjacency list and
use the partner references to find and renpbve each hal f-edge’'s
partner fromthe adjacency lists of u's neighbors in Q1) tinme

per edge. This option is illustrated in the acconpanying

figure, pj3graph.ps or pj3graph.pdf (both figures are the sane).
[ii] You could use just one data structure to represent (u, v), but

equip it with two forward and two backward references. However,

you nust be careful to follow the right
traverse a node's adjacency list.

If you want to use a DList class, you could use just a single
data structure to represent an edge, and put this structure into
both adjacency lists. The edge data structure contains two

DLi st Node references (signifying its position in each DList), so
it can extract itself fromboth adjacency lists in (1) tine.

references as you

[iii]

To support renoveEdge(), isEdge(), and weight() in (1) tine, you will
need a _second_ Hashtable for edges. The second Hashtabl e maps an
unordered pair of objects (both representing application-supplied vertices
in the graph) to your internal edge data structure. (If you are using
hal f - edges, follow ng suggestion [4i] above, you could use the reference
fromone half-edge to find the other.) To help you hash an edge in a
manner that does not depend on the order of the two vertices, | have
provided a class VertexPair.java designed for use as a key in Java's
Hasht abl e class. (The nethods VertexPair.hashCode and VertexPair.equal s
are witten so that (u, v) and (v, u) are considered to be equal keys in
a Java Hashtabl e; don’t change them unl ess you know what you' re doing.)

Technically, you don’t need a second Hashtable; you can store vertices and
edges in the sane table. However, you risk confusing yourself; having tw
separ at e Hashtabl es eases debuggi ng and reduces the |ikelihood of human
error. But it’s your decision.

To support renoveVertex() in O(d) time, you will
incident on a vertex fromthe hash table as well as the adjacency lists.
You will also need to adjust the vertex degrees. Hence, each edge or
hal f - edge shoul d have references to the vertices it is incident on.

need to renove the edges

11/13/06
23:47:28

[6] To support vertexCount(), edgeCount(), and degree() in Q1) tinme, you wll
need to maintain counts of the vertices, the edges, and the degree of each
vertex, and keep these counts updated with each operation.

Qur own Part | solution is 350 lines |ong.

Java Hash Tabl es
Java Hashtabl es are contained in java.util.Hashtable and docunented in Sun’'s
Java library APl Wb pages.

The nost salient nethods of the Hashtable class (for this project) appear

bel ow. Note that you should never pass null as a key or value; be careful with
your error checking. Note that these nethods return values only, not

(key, value) pairs.

publ i ¢ Hasht abl e()
Constructs a new, enpty hash table.

public synchroni zed Object put(Object key, Object value)
Maps the specified key to the specified value in this hash table. Neither
the key nor the value can be null. The value can be retrieved by calling
the get() nethod with a key that is equals() to the original key.

Ret urns:
the previous value of the specified key in this hash table, or null if
it did not have one.

publ i c synchroni zed bool ean cont ai nskey(Obj ect key)
Tests if the specified object is a key in this hash table.

Ret urns:
true if the specified object is a key in this hash table; false
ot herw se.

public synchroni zed Object get(Object key)
Returns the value to which the specified key is nmapped in this hash table.

Ret urns:
the value to which the key is mapped in this hash table; null if the
key is not mapped to any value in this hash table.

public synchroni zed Object renpve(Object key)

Renoves the key (and its corresponding value) fromthis hash table. This
net hod does nothing if the key is not in the hash table.

Ret urns:
the value to which the key had been mapped in this hash table, or null
if the key did not have a mappi ng.

You shoul d NOT use the contains() nmethod (which searches for a value, rather
than a key, in the Hashtable), because it has to search the entire Hashtable,
and will not run within the specified tinme bounds.

Java’' s Hasht abl es can use any object as a key. Hashtables do this by using the
hashCode() and equal s() nethods, which are defined on every object, but can be
overridden. By default, hashCode() hashes an object’s reference, and equal s()
declares two objects to be equal only if they are the same object. Hence, sone
cl asses of objects can serve as uni que keys, even if other objects of the sane
class have identical contents. However, there are also nmany classes that
override both methods and replace themw th data-dependent hashCode() and

equal s() nmethods. For exanple, two distinct Integer or String objects that
contain the sane data will return the same hashCode() and be found to be

equal s().

readme

We have provided you a VertexPair class expressly for use with Java’'s Hashtabl e
class, to serve as a key for an edge. The class holds a pair of objects that
serve as vertices fromthe application's point of view Two VertexPairs that
contain the same vertices in different orders are considered to be the sane.
Hence, hashCode() returns the sane integer for (u, v) as (v, u), and (u, v)
equal s() (v, u). See VertexPair.java for nore details.

We recomend you use the VertexPair class as the key for your edge hashTabl e.
However, you are not required to do so, and you nay change VertexPair.java
freely to suit your needs.

Interfaces

You may NOT change Nei ghbors.java or the signatures and behavior of
WUGraph.java. W will test that your WUG aph class correctly inplenments the
interface we have specified.

Nei ghbors.java is a class provided so the nethod WJUG aph. get Nei ghbors() can
return two arrays at once. W do not recommend using the Neighbors class for
any other purpose. It appears as follows:

public class Neighbors {
public Object[] neighborlList;
public int[] weightList;

}

G ven an input vertex, getNeighbors() returns a Neighbors object. neighborlList
is alist of all the vertices (application-provided objects, not internal
vertex representations) connected by an edge to the input vertex (including the
input vertex itself if it has a self-edge). weightList lists the weight of
each edge. The length of both lists is the degree of the input vertex.

get Nei ghbors() should construct and return a _new_ Nei ghbors object each tine
it is called.

Your WUGraph shoul d be wel | -encapsul ated: no internal field or class used to
represent your graph should be public. The Neighbors class is public because
it's part of the interface of the WUGraph ADT, and it’s not part of the
internal representation of your graph.

Part 11: Kruskal’s Algorithmfor M nimum Spanni ng Trees

I npl ement Kruskal 's al gorithmfor finding the mni mum spanning tree of a graph.
M ni mum spanni ng trees, and Kruskal’s algorithmfor constructing them are

di scussed by Goodrich and Tamassia, Sections 13.7-13.7.1. Your algorithm
shoul d be enbodied in a static nmethod called m nSpanTree() in a class called
Kruskal , which is NOT in the graph package. Your minSpanTree() nethod shoul d
not violate the encapsul ati on of the WJG aph ADT, and should only access a
WUGraph by calling the nethods listed in Part |. You may NOT add any public
nmet hods to the WUGraph class to nmake Part |1 easier (e.g., a nmethod that
returns all the edges in a WG aph).

The signature of m nSpanTree() is:

public static WJG aph mi nSpanTree(WG aph g);
This nethod takes a WUGraph g and returns anot her WUG aph that represents the
m ni mum spanning tree of g. The original WJGaph g is NOT changed. Let G be
the graph represented by the WUGraph g. Your inplenentation should run in
Q|V] + |El log |El) time, where |V| is the nunber of vertices in G and |E| is
the nunber of edges in G
Kruskal ' s al gorithm works as foll ows.

[1] Create a new graph T having the same vertices as G but no edges (yet).

11/13/06
23:47:28

[2]

[3l

[4]

Upon conpletion, T will be the m ninum spanning tree of G

Make a list (not necessarily linked) of all the edges in G You cannot
build this list by calling i sEdge() on every pair of vertices, because
that would take Q(|V|"2) time. You will need to use nultiple calls to
get Nei ghbors() to obtain the conplete |ist of edges.

Note that your edge data structure should be defined separately from any
edge data structure you use in WUG aph.java (Part |). Encapsulation
requires that the internal data structures of the WG aph cl ass not be
exposed to applications (including Kruskal).

Sort the edges by weight. If you wi sh, you may use one of Java's library
methods to do this; if you do, your edge data structure nust inplenent the
Conparabl e interface, and its conpareTo() nethod nust be public. (You
can instead use a priority queue, as Goodrich and Tamassi a suggest, but
sorting in advance is nore straightforward and is probably faster.)

Finally, find the edges of T using disjoint sets, as described in Lecture
33 and Goodrich & Tamassia Section 11.6.3. The disjoint sets code from
Lecture 33 is included in DisjointSets.java in the "set" package/
directory. To use the disjoint sets code, you will need a way to map the
objects that serve as vertices to unique integers. Again, Java's

Hasht abl e class is a good way to acconplish this.

Be forewarned that the DisjointSets class has no error checking, and will
fail catastrophically if you union() two vertices that are not roots of
their respective sets, or if you union() a vertex with itself. [If you
add sinple error checking, it mght save you a | ot of debugging tine.

Qur own Part |l solution is 100 |lines |ong.

Since Parts | and Il are on opposite sides of the WUG aph interface, a partner
can easily begin Part Il before Part | is working.

Style Rul es

_(SS_JM'TF_E; graded on style, docunmentation, efficiency, and the use of

encapsul ati on.

1)

2)

3)

Each nmet hod nust be preceded by a comment describing its behavior
unanbi guously. These conments nust include descriptions of what each
paraneter is for, and what the nethod returns (if anything).

They nust al so include a description of what the nethod does (though
not how it does it) detailed enough that sonebody el se could inplenent
a nethod that does the sanme thing from scratch.

Al classes, fields, and nethods nust have the proper public/private/
prot ect ed/ package qualifier. W will deduct points if you make things
public that coul d conceivably allow a user to corrupt the data structure.
We will deduct points for code that does not nmatch the followi ng style
gui del i nes.

Cl asses that contain extraneous debuggi ng code, print statements, or

neani ngl ess coments that nmake the code hard to read will be penalized.
Your file should be indented in the manner enforced by Enacs (e.g., a
two-space or four-space indentation inside braces), and used in the lecture
notes throughout the semester. The indentation should clearly show the
structure of nested statenments |ike |loops and if statenents.

Al if, else, while, do, and for statenents should use braces.

Al classes start with a capital letter, all nethods and (non-final) data
fields start with a |lower case letter, and in both cases, each new word
within the nane starts with a capital letter. Constants (final fields) are
inall capital letters.

Nurerical constants wi th special neaning shoul d al ways be represented by
all-caps "final static" constants.

readme

- Al class, nmethod, field, and variabl e names should be neaningful to a
human reader.

- Methods should not exceed about 100 |ines; any nethod that |ong can
probably be broken up into | ogical pieces. The same is probably true for
any nmethod that needs nore than 7 levels of indentation.

- Avoi d unnecessary duplicated code; if you use the same (or very simlar)
fifteen lines of code in two different places, those lines should probably
be a separate nethod call.

- Prograns should be easy to read.

The Aut ogr aders

| f possible, make sure that your program passes both of the test prograns

provi ded, WJGTest.java and Kruskal Test.java. |MPORTANT NOTE: |f you attenpt
to cheat and thwart the test code by witing code that |ooks for specific tests
and provides canned answers, rather than by witing code that correctly

i mpl ements a wei ghted undirected graph data structure and Kruskal’s algorithm
the graders will notice, and you will receive a score of -20 and a letter at
the Ofice of Student Conduct. Please don't try it.

Submi tting your Solution

Wite a file called GRADER that briefly docunents your data structures and the
desi gn deci sions you made in WUGraph.java and Kruskal .java that extend or
depart from those discussed here. In particular, tell us what choices you nade
in your inplenmentation to ensure that renoveVertex() runs in Q(d) tine (as
described in Part |, design elenment [4]).

Desi gnate one nenber of your teamto subnit the project. |f you resubnmit, the
proj ect should al ways be subnitted by the same student. |f for sonme reason a
different partner nust subnmit (because the designated nmenber is out of town,
for instance), you nust send cs6lb@ory.eecs a listing of your team nenbers,
expl ai ni ng which of them have submtted the project and why. Let us know which
submi ssion you want graded.

The designated teanmate only: Change (cd) to your pj3 directory, which should
contai n your GRADER, your Kruskal.java, the graph directory (package), the set
directory (package), and possibly a list directory (package) if you choose to
use an encapsul ated |ist ADT. The graph directory should contain your

WUGr aph.java and (if you use it) VertexPair.java. The set directory shoul d
contai n whatever code you are using for disjoint sets.

If you are using VertexPair.java and/or DisjointSets.java, you must submit them
because you' re allowed to change them the autograder won't supply the original

files. Mke sure any other files your project needs, possibly including a list
ADT, are present as well. You won't be able to submt Neighbors.java, because

you're not allowed to change it.

Make sure your project conpiles and runs on the _lab_ nachines (w th WGTest
and Kruskal Test) just before you submit. Type "submt pj3".

You may submit as often as you like. Only the |ast version you submt wll be
graded, unless you send email to cs6lb@ory.eecs asking that an earlier version
be graded.

