10/20/06
21:45:02

CS 61B Honmework 6
Due 4pm Friday, October 27, 2006

This homework will teach you about hash tables, hash codes, and conpression
functions. This is an individual assignnent; you may not share code with other
students.

Copy the Homework 6 directory by doing the follow ng, starting fromyour hone
directory. Don’t forget the "-r" switch in the cp command.

cp -r $master/hw hwe .

Part | (6 points)

I npl erent a class call ed HashTabl eChai ned, a hash table w th chaining.
HashTabl eChai ned i npl enents an interface called Dictionary, which defines the
set of methods (like insert(), find() and renpve()) that a dictionary needs.
Both files appear in the "dict" package.

The nethods you will inplenent are a subset of those listed on page 389 of
CGoodrich and Tamassia (no iterators are used in this assignnment), plus a
makeEnpty() nethod which renoves every entry froma hash table. There are al so
two HashTabl eChai ned constructors. One lets applications specify an estinate
of the nunber of entries that will be stored in the hash table; the other uses
a default size. Both constructors should create a hash table that uses a prine
nunber of buckets. (Several methods for identifying prime nunbers were
discussed early in the semester.) In the first constructor, shoot for a |oad
factor between 0.5 and 1. In the second constructor, shoot for around 100
buckets. Descriptions of all the methods may be found in Dictionary.java and
HashTabl eChai ned. j ava.

Do not change Dictionary.java. Do not change any prototypes in

HashTabl eChai ned. j ava, or throw any checked exceptions. Mst of your solution
shoul d appear in HashTabl eChai ned. java, but other classes are permtted. You
will probably want to use a linked list code, of your choice. (Note that even
though the hash table is in the "dict" package, it can still use linked I|ist
code in a separate "list" package. There's no need to nobve the list code into
the "dict" package.)

Look up the hashCode nethod in the java.lang. Object APlI. Assune that the

obj ects used as keys to your hash table have a hashCode() method that returns a
"good" hash code between |nteger. M N_VALUE and Integer. MAX_VALUE (that is,

bet ween -2147483648 and 2147483647). Your hash table should use a conpression
function, as described in lecture, to nap each key’'s hash code to a bucket of
the table. Your conpression function should be conputed by the conpFunction()
hel per nmethod in HashTabl eChai ned.java (which has "package" protection so we
can test it). insert(), find(), and renmove() should all use this
conpFunction() nethod.

The nethods find() and renove() should return (and in the latter case,
renove) an entry whose key is equals() to the paraneter "key". Reference
equality (==) is NOT required for a match.

readme

Conpr essi on functions

Besi des the | ecture notes, conpression functions are also covered in Section
9.2.4 of CGoodrich and Tamassia. Unfortunately, they make the erroneous claim
that for a hash code i and an N-bucket hash table,

h(i) =]ai + bl nod N
is "a nore sophisticated conpression function" than

h(i) =1i] md N
Actual ly, the "nore sophisticated" function causes _exactly_ the sane
collisions as the | ess sophisticated conpression function; it just shuffles the
buckets to different indices. The better conpression function, as | said in
lecture, is

h(i) = ((ai + b) mod p) mod N,

where p is a large prine that's substantially bigger than N (You can repl ace
the parentheses with absolute values if you like; it doesn't matter mnuch.)

For this homework, the sinplest conpression function mght suffice. The bottom
line is whether you have too many collisions or not in Part Il. |f so, you'll
need to i nprove your hash code or conpression function or both.

10/20/06
21:45:02

It is often useful to hash data structures other than strings or integers. For
exanpl e, game tree search can sonetinmes be sped by saving gane boards and their
eval uation functions, so that if the same ganme board can be reached by several
di fferent sequences of noves, it will only have to be evaluated once. For this
application each ganme board is a key, and the value returned by the m ni max
algorithmis the value stored al ongside the key in the hash table. [|f our
search encounters the same ganme board again, we can look up its value in the
dictionary, so we won’t have to cal cul ate the value tw ce.

The cl ass Sinpl eBoard represents an 8x8 checkerboard. Each position has one of
three values: 0, 1, or 2. Your job is to fill in two mi ssing nethods:

equal s() and hashCode(). The equal s() operation should be true whenever the
boards have the sane pieces in the sane |locations. The hashCode() function
shoul d satisfy the specifications described in the java.lang. bject APl. In
particular, if two SinpleBoards are equal s(), they have the sane hash code.

You will be graded on how "good" your hash code and conpression function are.
By "good" we nean that, regardless of the table size, the hash code and
conpression function evenly distribute SinpleBoards throughout the hash table.
Your solution will be graded in part on how well it distributes a set of
random y constructed boards. Hence, the sumof all the cells is not a good
hash code, because it does not change if cells are swapped. The product of all
cells is even worse, because it’s usually zero. Wiat's better? One idea is to
think of each cell as a digit of a base-3 nunber (with 64 digits), and convert
that base-3 nunmber to a single int. (Be careful not to use floating-point
nunbers for this purpose, because they round off the least significant digits,
which is the opposite of what you want. Better to round off the nost
significant digits, which is what happens when an int gets too big.)

Do not change any prototypes in SinpleBoard.java, or throw any checked
exceptions. The file Homework6Test.java is provided to help you test your
HashTabl eChai ned and your SinpleBoard together. Note that Homewor k6Test.java
does NOT test all the nmethods of HashTabl eChai ned; you should wite additional
tests of your own. Moreover, you will need to wite a test to see if your
hash code is doing a good job of distributing SinpleBoards evenly through the
table. Qur autograder will do extensive tests on that.

readme

A tutorial on collision probability

Students are al ways surprised when they find out how many col lisions occur in
a working hash table. You m ght have the misinpression that there won't be
many collisions at all until the table is nearly full. Let’s analyze how many
col lisions you should expect to see if your hash code and conpression function
are good.

If you have N buckets and a good (pseudorandom) hash function, the probability
of any two keys colliding is 1/N. So when you have i keys in the table and
insert key i + 1, the probability that the new key does NOT collide with any
old key is (1 - 1/N)?i. If you insert n distinct items, the expected nunber
that WON'T collide is

n-1
sum(1 - /N7 = N- N (1 - 1/N)*n,
i=0

so the expected nunber of collisions is
n- N+ N(1- 1/N”"n.

Now, for any n and N you test, you can just plug theminto this formula and see
if the nunber of collisions you're getting is in the ballpark of what you

shoul d expect to get. For exanple, if you have N = 100 buckets and n = 100
keys, expect about 36.6 collisions.

Submi tting your solution

Change (cd) to your hwé directory, which should contain SinpleBoard.java and
the dict directory (and optionally a list directory). The dict directory
shoul d contai n HashTabl eChai ned.java and any other .java files it uses (except
those in the |list package). You're not allowed to change Dictionary.java or
Entry.java, so the "submt" programwon't take them nor will it take

Honmewor k6Test . j ava (whi ch you can change as nmuch as you like).

Make sure that your submi ssion conpiles and runs on the _lab_ machines. From
your hwe directory, type "submit hwe". (Note that "submit" will not work if

you are inside the dict or list directory!) After submitting, if you realize
your solution is flawed, you nay fix it and subnit again. You nay subnit as

often as you like. Only the last version you subnit before the deadline wll
be graded.

