RANDOMIZED ANALYSIS

The implementations of hash tables we have studied don’t use random numbers, but we can model the effects of collisions on running time by pretending we have a random hash code.

A _random_hash_code_ maps each possible key to a number that’s chosen randomly. This does _not_ mean we roll dice every time we hash a key. A hash table can only work if a key maps to the same bucket every time. Each key always hashes to a randomly chosen bucket in the table, but a key’s random hash code never changes.

Unfortunately, it’s hard to choose a hash code randomly from all possible hash codes, because you need to remember a random number for each key, and that would seem to require another hash table. However, random hash codes are a good _model_ for how a good hash code will perform. The model isn’t perfect, and it doesn’t apply to load hash codes, but for a hash code that proves effective in experiments, it’s a good rough guess. Moreover, there is a sneaky number-theoretical trick called _universal_hashing_ that generates random hash codes. These random hash codes are chosen from a relatively small set of possibilities, yet they perform just as well as if they were chosen from the set of all possible hash codes. (If you’re interested, you can read about it in the textbook "Algorithms" by Cormen, Leiserson, Rivest, and Stein.)

Assume our hash table uses chaining and does not allow duplicate keys.

If an entry is inserted whose key matches an existing entry, the old entry is replaced.

Suppose we perform the operation find(k), and the key k hashes to a bucket b. Bucket b contains at most one entry with key k, so the cost of the search is one dollar, plus an additional dollar for every entry in bucket b whose key is not k. (Recall from last lecture that a _dollar_ is a unit of time chosen large enough to make this statement true.)

Suppose there are n keys in the table besides k. Let V1, V2, ..., Vn be random variables such that for each key ki, the variable Vi = 1 if key ki hashes to bucket b, and Vi is zero otherwise. Then the cost of find(k) is

$$T = 1 + V1 + V2 + ... + Vn.$$

The expected cost of find(k) is (by linearity of expectation)

$$E[T] = 1 + E[V1] + E[V2] + ... + E[Vn].$$

What is E[V1]? Since there are N buckets, and the hash code is random, each key has a 1/N probability of hashing to bucket b. So E[V1] = 1/N, and

$$E[T] = 1 + n/N,$$

which is one plus the load factor! If we keep the load factor n/N below some constant c as n grows, find operations cost expected O(1) time.

The same analysis applies to insert and remove operations. All three hash table operations take O(1) expected amortized time. (The word "amortized" accounts for table resizing, as discussed last lecture.)

Observe that the running times of hash table operations are _not_ independent. If key k1 and key k2 both hash to the same bucket, it increases the running time of both find(k1) and find(k2). Linearity of expectation is important because it implies that we can add the expected costs of individual operations, and obtain the expected total cost of all the operations an algorithm performs.
Recall that mergesort sorts \(n \) items in \(O(n \log n) \) time because the recursion tree has 1 + ceiling(\(\log_2 n \)) levels, and each level involves \(O(n) \) time spent merging lists. Quicksort also spends linear time at each level (partitioning the lists), but it is trickier to analyze because the recursion tree is not perfectly balanced, and some keys survive to deeper levels than others.

To analyze quicksort, let’s analyze the expected depth one input key \(k \) will reach in the tree. (In effect, we’re measuring a vertical slice of the recursion tree instead of a horizontal slice.) Assume no two keys are equal, since that is the slowest case.

Quicksort chooses a random pivot. The pivot is equally likely to be the smallest key, the second smallest, the third smallest, ..., or the largest. For each case, the probability is \(1/n \). Since we want a roughly balanced partition, let’s say that the least floor \((n/4) \) keys and the greatest floor \((n/4) \) keys are “bad” pivots, and the other keys are “good” pivots. Since there are at most \(n/2 \) bad pivots, the probability of choosing a bad pivot is \(\leq 0.5 \).

If we choose a good pivot, we’ll have a 1/4-3/4 split or better, and our chosen key \(k \) will go into a subset containing at most three quarters of the keys, which is sorted recursively. If we choose a bad pivot, \(k \) might go into a subset with nearly all the other keys.

Let \(D(n) \) be a random variable equal to the deepest depth at which key \(k \) appears when we sort \(n \) keys. \(D(n) \) varies from run to run, but we can reason about its expected value. Since we choose a bad key no more than half the time,

\[
E[D(n)] = 1 + 0.5 E[D(n) + 0.5 E[D(3n/4)]].
\]

Multiplying by two and subtracting \(E[D(n)] \) from both sides gives

\[
E[D(n)] = 2 + E[D(3n/4)].
\]

This inequality is called a “recurrence,” and you’ll learn how to solve them in CS 170. (No, recurrences won’t be on the CS 61B final exam.) The base cases for this recurrence are \(D(0) = 0 \) and \(D(1) = 0 \). It’s easy to check by substitution that a solution is

\[
E[D(n)] = 2 \log n.
\]

So any arbitrary key \(k \) appears in expected \(O(\log n) \) levels of the recursion tree, and causes \(O(\log n) \) partitioning work. By linearity of expectation, we can sum the expected \(O(\log n) \) work for each of the \(n \) keys, and we find that quicksort runs in expected \(O(n \log n) \) time.

Quicksort

For quicksort, we can analyze the expected running time more directly. Suppose we run quicksort on \(n \) keys. Let \(P(n) \) be a random variable equal to the total number of keys partitioned, summed over all the partitioning steps. Then the running time is in \(\Theta(P(n)) \).

Quicksort is like quicksort, but when we choose a good pivot, at least one quarter of the keys are discarded. We choose a good pivot at least half the time, so

\[
E[P(n)] = n + 0.5 E[P(n)] + 0.5 E[P(3n/4)],
\]

which is solved by \(E[P(n)] = 8n \). Therefore, the expected running time of quickselect on \(n \) keys is in \(O(n) \).

Quicksort with random pivots takes \(O(n \log n) \) expected running time, but its worst-case running time is in \(\Theta(n^2) \). This means that there is a small possibility that quicksort will cost \(\Omega(n^2) \) dollars, but the probability of that happening approaches zero as \(n \) approaches infinity.

A splay tree operation takes \(O(\log n) \) amortized time, but the worst-case running time for a splay tree operation is in \(\Theta(n) \). Splay trees are not randomized, and the “probability” of an \(\Omega(n) \)-time splay tree operation is not a meaningful concept. If you take an empty splay tree, insert the items \(1, \ldots, n \) in order, then run find\((i) \), the find operation _will_ cost \(n \) dollars. But a sequence of \(n \) splay tree operations, starting from an empty tree, _never_ costs more than \(O(n \log n) \) actual running time. Ever.

Hash tables are an interesting case, because they use both amortization and randomization. Resizing takes \(\Theta(n) \) time. With a random hash code, there is a tiny probability that every item will hash to the same bucket, so the worst-case running time of an operation is \(\Theta(n) \)—even without resizing.

To account for resizing, we use amortized analysis. To account for collisions, we use randomized analysis. So when we say that hash table operations run in \(O(1) \) time, we mean they run in \(O(1) \) _expected_, _amortized_ time.

Quicksort

Amortized Time vs. Expected Time

There’s a subtle but important difference between amortized running time and expected running time.

Quicksort with random pivots takes \(O(n \log n) \) expected running time, but its worst-case running time is in \(\Theta(n^2) \). This means that there is a small possibility that quicksort will cost \(\Omega(n^2) \) dollars, but the probability of that happening approaches zero as \(n \) approaches infinity.