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                              CS 61B  Homework 3
                    Due noon Wednesday, February 12, 2014

This homework assignment is designed to give you practice working with arrays,
linked lists, and nested loops.  It will also give you practice for the similar
but harder run-length encoding computations in Project 1.  This is an
individual assignment; you may not share code with other students.

Copy the Homework 3 directory by doing the following, starting from your home
directory:

    cp -r ˜cs61b/hw/hw3 .
    cd hw3

Your task is to write two methods for removing successive duplicate items from
lists, and one method for adding them.  The smoosh() method operates on lists
represented as arrays, and the squish() method and twin() method operate on
singly-linked lists.

The Homework3 class includes test code for all three methods, as well as a
skeleton for the smoosh() method.  The SList class from Lab 3 is also present,
and here includes skeletons for the squish() method and the twin() method.

You can test all three methods by compiling and running Homework3.java.  As
usual, you are welcome to add test cases to the main() method or change main()
as you please; we will not test main().  However, you cannot change the
interface of the public methods and classes, because our autograder will use
them.  So you might want to keep a copy of the original main() test code
around--if you accidentally change a prototype, the test code will catch it.

You may NOT use Java’s built-in data structure libraries, like java.util.Vector
or java.util.LinkedList, in this homework (or any future homework, except where
otherwise specified).  All data structure implementations should be your own or
those taken from lectures/labs/homeworks.

Part I  (5 points)
------------------
Fill in the smoosh() method in the Homework3 class so that it performs as
indicated in the comment.  Your solution should not use linked lists, nor
should it use your squish() method.

  /**
   *  smoosh() takes an array of ints.  On completion the array contains
   *  the same numbers, but wherever the array had two or more consecutive
   *  duplicate numbers, they are replaced by one copy of the number.  Hence,
   *  after smoosh() is done, no two consecutive numbers in the array are the
   *  same.
   *
   *  Any unused elements at the end of the array are set to -1.
   *
   *  For example, if the input array is [ 0 0 0 0 1 1 0 0 0 3 3 3 1 1 0 ],
   *  it reads [ 0 1 0 3 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 ] after smoosh()
   *  completes.
   *
   *  @param ints the input array.
   **/

  public static void smoosh(int[] ints) {
    // Fill in your solution here.  (Ours is fourteen lines long, not counting
    // blank lines or lines already present in this file.)
  }

Part II  (3 points)
-------------------
Fill in the squish() method in the SList class so that it performs as indicated
in the comment.  Your solution should not use arrays, nor should it use your
smoosh() method.  Do not change the prototype of the SList constructor or the
insertEnd method; our test software will call them.

  /**
   *  squish() takes this list and, wherever two or more consecutive items are
   *  equals(), it removes duplicate nodes so that only one consecutive copy
   *  remains.  Hence, no two consecutive items in this list are equals() upon
   *  completion of the procedure.
   *
   *  After squish() executes, the list may well be shorter than when squish()
   *  began.  No extra items are added to make up for those removed.
   *
   *  For example, if the input list is [ 0 0 0 0 1 1 0 0 0 3 3 3 1 1 0 ], the
   *  output list is [ 0 1 0 3 1 0 ].
   *
   *  IMPORTANT:  Be sure you use the equals() method, and not the "=="
   *  operator, to compare items.
   **/

  public void squish() {
    // Fill in your solution here.  (Ours is eleven lines long.)
  }

Part III  (2 points)
--------------------
Fill in the twin() method in the SList class so that it performs as indicated
in the comment.  Your solution should not use arrays.

  /**
   *  twin() takes this list and doubles its length by replacing each node
   *  with two consecutive nodes referencing the same item.
   *
   *  For example, if the input list is [ 3 7 4 2 2 ], the
   *  output list is [ 3 3 7 7 4 4 2 2 2 2 ].
   *
   *  IMPORTANT:  Do not try to make new copies of the items themselves.
   *  Make new SListNodes, but just copy the references to the items.
   **/

  public void twin() {
    // Fill in your solution here.  (Ours is seven lines long.)
  }

Submitting your solution
------------------------
Change (cd) to your hw3 directory, which should contain Homework3.java,
SList.java, SListNode.java, TestHelper.java, and any other files needed to run
your methods.  Make sure your homework compiles and runs on the _lab_ machines
just before you submit.

From your hw3 directory, type "submit hw3".  After submitting, if you realize
your solution is flawed, you may fix it and submit again.  You may submit as
often as you like.  Only the last version you submit before the deadline will
be graded.


