03/22/06
17:36:39

CS 4: Lecture 17
Monday, March 20, 2006

Recur si on

Recursion is the word for when a nethod calls itself.

Recursion is a natural way to conpute a factorial, for exanple. The factorial
of a nonnegative integer n can be defined inductively as

| 1, n=0or n=1

| n(n- 1)! , n>1
\

We can wite recursive code that echoes this inductive definition.

public static int factorial(long n) {

if (n<=1) {
return 1,
} else {
return n * factorial(n - 1);
}
}
If you call "factorial (0)" or "factorial (1)", the factorial nethod follows the

first branch of the "if" statenment, and sinply returns 1.

But suppose you call "factorial (4)". The factorial method conputes 4! by
calling "factorial (3)", multiplying 3! by 4, and returning the product.

Seens odd, doesn’t it? How can you depend on "factorial (3)" working when we're
in the mddle of witing the "factorial" code?

The answer is because conputing 3! is easier (takes |ess conputation) than
conputing 4!.

It's a lot like inductive proofs in mathematics. Recall how induction works.

n
Theorem For all n >= 1, n! <=n .
Proof: By induction.
n
Base case: Suppose n =1. Thenn! =1and n =1,

so the theoremholds for n = 1.

I nductive step: Suppose n =j > 1. For the sake of induction, assune the
theorem holds for all n _less_than j. W’Il showthat it holds for n =j
t oo.

i -1 j -1
The theorem holds for n =j - 1, so (j - 1)! <=(j - 1) <j

I
Mil tiplying both sides by j gives j! <= Therefore, the theorem hol ds
for n=j. QED

The recursive factorial nethod is a lot like this proof.

- First, the recursive nmethod has a _base_case_, which handles the cases n = 0
and n = 1.

- Second, the recursive nmethod _assunmes_ that it itself works correctly for
nunbers |l ess than n, and uses that fact to conpute n!.

17

The best way to understand recursion, though, is to think of what’'s happening
on the stack. Wen you call "factorial(4)", a stack frame is created for the
factorial nethod, with the local variable n set to 4.

Then factorial makes the nethod call "factorial(3)". This puts a second stack
frame for factorial on top of the stack, with the local variable n set to 3.
Then factorial (3) calls factorial (2) which calls factorial (1), so we have four
frames on the stack.

nmet hod cal | paraneters & |l ocal variables
.. |
T | -
factorial n| 1] | <- this is the base case
----- |
__ |
e |
factorial nl 2] |
""" |
e |
factorial n| 3] |
----- |
.. |
e |
factorial n| 4] |
----- |
__
nai n args | ? | |

Finally, we've reached the base case; "factorial (1)" returns 1, and does not
call "factorial" again.

Then, “"factorial (2)" multiplies 2 by 1 and returns 2.
Then, "factorial (3)" nultiplies 3 by 2 and returns 6.
Finally, "factorial (4)" nmultiplies 4 by 6 and returns 24.

The idea of scope is very inportant with recursion, because there could be
hundreds of "factorial" stack franes on the stack at once, and thus hundreds of
variables naned "n". As always, _only_ the top stack frame is accessible at
any given nonent. The variable "n" in the factorial nmethod always refers to
the nin the top stack frane.

What woul d happen if we wote "factorial" |ike this?

public static int factorial(long n) {
return n * factorial(n - 1);

}

This "factorial" would keep calling itself forever--effectively, in an infinite
| oop--endl essly putting nore stack frames on the stack, until the conputer runs
out of stack space and Java termnates with an error nmessage. For recursion to
work, you need to make sure that any call to a recursive nmethod will always
reach the base case eventually and stop calling itself.

03/22/06
17:36:39

Mbst | oops can be turned into recursive nethods. For exanple, the follow ng
two nethods print all the nunbers from1 to n.

public static void count(long n) { public static void count(long n) {

for (long i =1; i <=n; i++) { if (n>0) {
Systemout.println(i); I/l Print nunbers 1...n - 1

}

|
|

} | count(n - 1);
| System out. println(n);
| }

|

}

How does the recursive version on the right work? It calls itself recursively
to print all the nunbers from1...n - 1, then it prints n. The base case is
n <= 0, for which the "count" nethod does not hi ng.

What happens if we switch the order of the "println" call and the recursive
call?

public static void countDown(long n) {
if (n>0) {
System out. println(n);
// Print nunbers 1...n - 1
count Down(n - 1);

}

This procedure prints n _first_, _then_ prints the nunbers between 1 and n - 1.
The effect is that it prints the nunbers in reverse order, fromn down to 1.

Rewriting a sinple loop (or even the factorial conputation) as a recursive call
isn't useful in practice, because the code just got |onger and slower.

However, sonme |oops |end thenselves naturally to a recursive expression.
Here's a recursive version of the gcd nethod.

static private long gcd(long a, long b) {
if (b==0) {
return a;
} else {
return gcd(b, a %b);

}
The base case occurs when b = 0, because GCD(a, 0) = a. In all other cases,
"gcd" calls itself recursively using the formula GCD(a, b) = GCD(b, r) we
derived | ast week, where r is the remainder fromdividing a by b. If you call

gcd(15, 6), after two recursive calls the stack looks like this.

net hod cal | paranmeters & | ocal variabl es

__ |
__________ | o

gcd a| 3| b| 0] | <- this is the base case
---------- |

..

gcd al 6] bl 3]

__

gcd a | 15] b| 6] |

The top "gcd" on the stack has reached the base case; next, all the "gcd"
nmet hods on the stack (fromtop to botton) will return 3.

17

Here' s an exanpl e of recursion froma conputer gane called "Dungeon of the
Overlord" | wote as a teen. It included a magic "Wand of Wénder". Wen you
wave the magic wand, it casts a magic spell chosen randomy froma sel ected
subset of all the possible magic spells.

private magi cSpel |l (int spell Nunber) {
/1 Make nmgic sound, other preparations....
swi tch(spel | Nunber) {

case 38:

/1 Wand of wonder.
int randonSpell = (int) (15 * random next Doubl e()); /1 Spells 0...14
magi cSpel | (randonSpel 1) ;
br eak;
case 39:
}

}

