02/01/06
16:49:16

CS 4: Lecture 5
Wednesday, February 1, 2006

Wy Wite Methods?

(1) Suppose you have a conplicated operation you want to do in many different
places in your code, |ike computing the length of a vector. You can wite
one nethod to conpute the length of a vector, and use it over and over
again. This keeps your code nuch cleaner and easier to read than if you
cut - and- paste the code over and over again.

I engthp = position.length();
lengthv = velocity.length();
I engtha = accel eration.length();

(2) Suppose you need to change the way you conpute the length of a vector--
for exanple, you were doing it wong and need to correct your code. You
only need to change your code in one place, instead of a hundred places.

(3) Very long progranms are hard to read. You can make them much easier by
di viding your code into big operations, each conprising many |lines of
code, and noving theminto separate nethods with neani ngful nanes.

public void static main() {
Data data = getData(); /1 Was 500 |ines of code.
doubl e energy = data. conput eEnergy(); /1 Was 700 lines of code.
dat a. out put Resul t (ener gy) ; /1 Was 600 |ines of code.
}

Then you can break "getData" and "conputeEnergy" and "outputResult" into
smal | er nmethods, and those into snaller nethods, and so on. This is how
really large prograns get witten: by breaking themdown into coherent
pi eces that can each be understood i ndependently.

(4) By associating nethods (code) with the objects they mani pul ate, you
organi ze your code in a logical, nore readable nmanner. You'll understand
this better when you' ve had nore progranm ng experience.

Wien you call a nethod and pass paraneters to it, the paraneters are passed
_by _value_. This neans that the nethod has a _copy_ of the actual paraneter,
and cannot change the original.

Let’s | ook at an exanpl e.

public static void main(String[] args) {
long ¢ = 1;
doNot hi ng(c);
System out. println(c);

}

static void doNot hing(long x) {
X = 2;

}

05

Wien you run this program Java begins execution with the nain nethod, which
declares a variable "c" and sets it to one:

Wien "nmain" calls "doNothing(c)", the doNothing nethod declares a _new_
variable "x" to hold the value of the paraneter, and _copies_ the value of ¢
into x. That’s what in neans to pass paraneters by val ue.

Next, the doNothing nethod assigns x a value of 2.

The inportant thing to notice is that the value of c is unchanged. In fact,
there is _no_ way the doNothing method can change the val ue of c.

Next, the doNothing nethod ends. Wen a nethod ends, all the paraneters and
| ocal variables declared inside that method di sappear forever.

To make it a little nore confusing...we could have call ed doNot hing's paraneter
"ct.
static void doNothing(long c) {
c =2
}

But things would have turned out exactly the same way. Confusingly, we would
have two different variables naned c.

But the left "c" can only be accessed frominside "main", and the right "c" can
only be accessed frominside "doNothing". "Pass by value" still works the sanme
way: main's c gets copied into doNothing’s ¢, and then none of the changes
doNot hi ng makes to its ¢ have any effect on main’s c.



02/01/06
16:49:16

Constructors

A constructor is a nethod that constructs an object. Let’'s wite a constructor
that constructs a Quantity. The constructor won't actually contain code that
does the creating; rather, Java provides a brand new object for us right at the
begi nning of the constructor, and all you have to wite in the constructor is
code to initialize the new object (or not even that).

class Quantity {
/1 Include all the stuff fromLecture 4 here.

public Quantity(String nmyUnit) {
amount = 1.0;
unit = nmyUnit;

}
Notice that the constructor is named "Quantity", and it returns an object of
class "Quantity". This constructor is called when we wite "new Quantity(s)",

where s is a String object. Now, we can shorten initializing a frequency.

Quantity frequency = new Quantity("Hertz");
frequency. contents();

The output is:

| represent 1.0 Hertz.
In Lecture 4, we constructed a Quantity object wi thout witing a constructor
first. How did we do that? Java provides every class with a defaul t
constructor, which takes no paranmeters and does no initializing. Hence, when
we wrote

new Quantity()

we created a new, blank Quantity. |If the default constructor were defined
explicitly, it would look like this:

public Quantity() {
}

You can override the default constructor by explicitly witing your own
constructor with no paraneters.

public Quantity() {
amount = 0.0;

unit = "thingies";
}
Warning: if you wite your own Quantity constructor, even if it takes
paraneters, the default constructor goes away. |f you want to have the default

Quantity constructor (wWith no paranmeters) _and_ another Quantity constructor
(with paraneters), you nust define both explicitly.

05




