
CS 274
Computational Geometry (Spring 2013)

Homework 4

Homework 4 is dueat the start of class (2:40 pm) on Wednesday, April 17, 2013.

[1] Line-polygon intersection and linear programming with preprocessing (6 points).

(i) You are given a convex polygonP , described as an array ofn vertices in counterclockwise order. Sup-
pose you know the indices of the lexicographically least andgreatest vertices. Describe an algorithm
for testing inO(logn) time whether an arbitrary lineℓ intersectsP , with no preprocessing. (Hint:
duality might help you better understand the problem.)

(ii) You are given a two-variable linear program. The feasible region is two-dimensional (i.e. a polygon),
possibly unbounded. Explain how to preprocess the linear constraints so that, given any objective
vectorc, you can solve the linear program inO(logn) time (not counting the preprocessing time).

(iii) Briefly explain the relationship between problems (i)and (ii), and in particular, betweenℓ andc.

[2G] Cocircularities and symbolic weight perturbations (8 points). If you believe that every point set
has a convex hull, then the parabolic lifting map shows that every d-dimensional point set has a Delaunay
triangulation . . . unless the point set includesd + 2 points lying on a common hypersphere, in which case
the underside of the convex hull of the lifted points might not be simplicial. Let’s fix this with symbolic
perturbations. We’ll work in two dimensions, but the ideas generalize easily to any dimensionality.

LetV = {v1, v2, . . . , vn} be a set of vertices in the plane.V may have subsets of four or more cocircular
vertices, soV may have many Delaunay triangulations.

(i) For any vertexv with a realweight w, define the lifting map〈v, w〉 7→ v+ = (vx, vy, v
2
x + v2y − w) ∈

E3. Show that there exist weightsw1, w2, . . . , wn (one for each vertex inV ) such that
• if I NCIRCLE(vi, vj , vk, vl) > 0, then ORIENT3D(v+i , v

+

j , v
+

k , v
+

l ) > 0;
• if I NCIRCLE(vi, vj , vk, vl) < 0, then ORIENT3D(v+i , v

+

j , v
+

k , v
+

l ) < 0; and
• if I NCIRCLE(vi, vj , vk, vl) = 0, and the four vertices are distinct andnot collinear, then

ORIENT3D(v+i , v
+

j , v
+

k , v
+

l ) 6= 0. Therefore, the non-vertical faces (those not parallel to the
z-axis) of the convex hull ofV + = {v+

1
, v+

2
, . . . , v+n } are all triangles.

Hints: choose small weights. Think about the relationship between a lifted point and a plane through a
triple of lifted points when you perturb the weight of one of those four points. Then think about all the
points and planes together when you perturb a weight. A correct proof will probably use induction.

(ii) Let T be the projection of the faces on the underside ofconv(V +) down toE2. T is called aweighted
Delaunay triangulation. Prove that for your choice of weights,T is a Delaunay triangulation ofV .

(iii) We can modify the randomized incremental Delaunay triangulation algorithm by replacing each IN-
CIRCLE test with an ORIENT3D test on the lifted points, and thus guarantee that we always compute
the same canonical triangulation regardless of the point insertion order. (For this algorithm, the back-
ward analysis of running time extends to points not in general position, because every Delaunay trian-
gulation is now unique.) However, we want to use symbolic weights (like in our point-in-polyhedron
algorithm) instead of explicitly computed weights—explicit weights satisfying the conditions in part
(i) are so small that numerical roundoff makes computation with them impractical. So we begin by
computing ORIENT3D on theunperturbed points (i.e. with the weights set to zero). Part (i) tell us
we only need to take the weights into account if that result iszero, in which case we must perform
one or more additional tests to disambiguate the sign of ORIENT3D on the perturbed points. Describe
those additional tests. Hint: observe that ORIENT3D is alinear function of the weights, so it’s easy to
determine how changing a weight will change the function. (Even if ORIENT3D were a black box).

1



Postscript: the Dutch Book’s trick for handling the vertices of the triangular bounding box works by
assigning them weights of−C, −C2, and−C3 asC → ∞, and modifying the INCIRCLE test accordingly.

[3] Counting problems in orthogonal range search (5 points). The orthogonal range search problem we
have studied is thereporting problem, where we want to list all the points in a query box. Here we are
interested in thecounting problem, where we merely want to state how many points are in aquery box. Call
this numberk. Since we are not listing the points, there is noΩ(k) lower bound on query time.

Suppose you have a two-dimensional layered range tree (withfractional cascading) representing a setP

of n points in the plane. Without modifying the data structure, explain how you can report the number of
points ofP in a query boxB = [x, x′]× [y, y′] in O(logn) time.

(If you can’t solve this, then for partial credit explain howto report the number of points inB = [y, y′]
from a 1-dimensional range tree inO(logn) time.)

[4G] Adding points to a convex hull (6 points). LetS andT be two sets of points, havings points andt
points respectively. Suppose we are given the convex hullconv(S) expressed as a facet graph, as produced
by the Clarkson–Shor incremental convex hull constructionalgorithm, and our task is to incrementally insert
the points inT and thus constructconv(S ∪ T ).

We use the following algorithm. First, for each pointp in T , find a facet ofconv(S) visible from p

(or verify that none exists) by brute force (checking each point against each facet), and thereby build a
conflict graph inO(ts⌊d/2⌋) time. Second, incrementally insert the vertices ofT in random order (with each
permutation being equally likely) using the Clarkson–Shoralgorithm.

If we were constructingconv(S∪T ) from scratch, with the insertion order wholly randomized, it would
take at worst expectedO((s + t)⌊d/2⌋ + (s + t) log(s + t)) = O(s⌊d/2⌋ + t⌊d/2⌋ + s log s + t log t) time.
However, becauseS is not a random subset ofS ∪ T , the expected running time for this algorithm can be
worse. An adversary could chooseS in such a way that inserting the vertices ofT is slow.

Prove that the expected time to incrementally insert the vertices ofT is in O(t⌊d/2⌋ + t log t+ ts⌊d/2⌋).
(For asymptotic purposes, treat the dimensiond as a small fixed constant.)

Some hints.

• You may safely assume that the time spent making structural changes does not exceed the time spent
updating the visibilities (conflict graph), and analyze only the latter.

• The technique presented in class for analyzing the expectedrunning time works here as well, with
several differences. First, define a(j,m)-facet to be a facet withj stoppers inT , m triggers inT , and
d −m triggers inS. (Facets with stoppers inS will never appear, so we can ignore them.) Define a
(≤ j,m)-facet likewise, having≤ j stoppers. Adapt the random sampling technique used in classto
show that the number of(≤ j,m)-facets is

Fj,m ∈ O
(

jms⌊d/2⌋ + jm−⌊d/2⌋t⌊d/2⌋
)

for j ≥ 1. (Obviously,F0,m ∈ O((s+ t)⌊d/2⌋).) Figure out the probability that a(≤ j,m)-facet will
appear at some time during the algorithm. Find the sum of all visibilities created.

• Alternatively, you could adapt the proof in Section 9 of Seidel’s paper. The changes to the analysis
arise because the setsS andT might be chosen (by an adversary) so the uninserted verticesof T can
see a larger-than-usual number of facets, and the inserted vertices ofT have much higher average
degree than the vertices ofS. This is why the time complexity can exceedO((s+ t)⌊d/2⌋).

•
∑n

i=1
1

i ≤ 1 + lnn.

•
∑∞

i=1
1

i2
= π2

6
. Likewise,

∑∞
i=1

1

ip converges for anyp ≥ 2.

2


