CS 274
Computational Geometry (Spring 2013)
Homework 4

Homework 4 is dueat the start of class (2:40 pm) on Wednesday, April 17, 2013.
[1] Line-polygon inter section and linear programming with preprocessing (6 points).

() You are given a convex polygaR, described as an arrayofvertices in counterclockwise order. Sup-
pose you know the indices of the lexicographically least guectest vertices. Describe an algorithm
for testing inO(logn) time whether an arbitrary liné intersectsP, with no preprocessing. (Hint:
duality might help you better understand the problem.)

(ii) You are given a two-variable linear program. The feéesitegion is two-dimensional (i.e. a polygon),
possibly unbounded. Explain how to preprocess the lineastcaints so that, given any objective
vectore, you can solve the linear program@(log n) time (not counting the preprocessing time).

(i) Briefly explain the relationship between problemsdid (ii), and in particular, betwedrandc.

[2G] Cacircularities and symbolic weight perturbations (8 points). If you believe that every point set
has a convex hull, then the parabolic lifting map shows thatyed-dimensional point set has a Delaunay
triangulation ... unless the point set includes 2 points lying on a common hypersphere, in which case
the underside of the convex hull of the lifted points might he simplicial. Let’s fix this with symbolic
perturbations. We'll work in two dimensions, but the ideaseralize easily to any dimensionality.

LetV = {v,v9,...,v,} be asetof vertices in the planE.may have subsets of four or more cocircular
vertices, sd/ may have many Delaunay triangulations.

(i) For any vertexo with a realweight w, define the lifting magv, w) — v+ = (vy, vy, v2 + vZ —w) €
E3. Show that there exist weights; , wo, . . . , w,, (one for each vertex ifv') such that
e if INCIRCLE(v;, v}, vk, v;) > 0, then CRIENT3D(.+, vl ol 00) > 0;
o if INCIRCLE(vi, vj, vk, 1) < 0, then QRIENT3D(v;", v}, v, v;") < 0; and
o ifl NC|RCLE(U,, v],vk,vl) =0, and the fourvertlces are distinct anat collinear, then
ORIENT3D(v;, v; ,vlj,ful) # 0. Therefore, the non-vertical faces (those not paralleh® t
z-axis) of the convex hull o = = {v]", v, ..., v} are all triangles.
Hints: choose small weights. Think about the relationskideen a lifted point and a plane through a
triple of lifted points when you perturb the weight of onelobse four points. Then think about all the
points and planes together when you perturb a weight. A copr@of will probably use induction.

(ii) Let T be the projection of the faces on the undersideoaf (V) down toE2. T is called aveighted
Delaunay triangulation. Prove that for your choice of weightg,is a Delaunay triangulation df .

(i) We can modify the randomized incremental Delaunagrtgulation algorithm by replacing each-|
CIRCLE test with an QRIENT3D test on the lifted points, and thus guarantee that we awaynpute
the same canonical triangulation regardless of the posgriion order. (For this algorithm, the back-
ward analysis of running time extends to points not in gdrpasition, because every Delaunay trian-
gulation is now unique.) However, we want to use symbolioghts (like in our point-in-polyhedron
algorithm) instead of explicitly computed weights—exjiligeights satisfying the conditions in part
(i) are so small that numerical roundoff makes computatiith #hem impractical. So we begin by
computing GQRIENT3D on theunperturbed points (i.e. with the weights set to zero). Partefl us
we only need to take the weights into account if that resutei®, in which case we must perform
one or more additional tests to disambiguate the signRIEQT3D on the perturbed points. Describe
those additional tests. Hint: observe thati©NT3D is alinear function of the weights, so it's easy to
determine how changing a weight will change the functionvetkif ORIENT3D were a black box).

Postscript: the Dutch Book’s trick for handling the vertoaf the triangular bounding box works by
assigning them weights efC, —C?, and—C? asC — oo, and modifying the NCIRCLE test accordingly.

[3] Counting problemsin orthogonal range search (5 points). The orthogonal range search problem we
have studied is theeporting problem, where we want to list all the points in a query box.rdHee are
interested in theounting problem, where we merely want to state how many points arejireay box. Call
this numberk. Since we are not listing the points, there is{@) lower bound on query time.

Suppose you have a two-dimensional layered range tree ffaithional cascading) representing a Bet
of n points in the plane. Without modifying the data structusglain how you can report the number of
points of P in a query boxB = [z, 2] x [y, '] in O(logn) time.

(If you can't solve this, then for partial credit explain hoavreport the number of points iB = [y, ¢/]
from a 1-dimensional range tree logn) time.)

[4G] Adding pointsto a convex hull (6 points). LetS andT be two sets of points, havingpoints andt
points respectively. Suppose we are given the convexchuit(S) expressed as a facet graph, as produced
by the Clarkson—Shor incremental convex hull construdigorithm, and our task is to incrementally insert
the points inl” and thus construconv (S U T).

We use the following algorithm. First, for each popin 7, find a facet ofconv(.S) visible from p
(or verify that none exists) by brute force (checking eachnpagainst each facet), and thereby build a
conflict graph in(’)(tsld/ZJ) time. Second, incrementally insert the verticeq’ah random order (with each
permutation being equally likely) using the Clarkson—Silgorithm.

If we were constructingonv (S UT') from scratch, with the insertion order wholly randomizedyauld
take at worst expecte@((s + t)L92) + (s + t)log(s + t)) = O(sl¥2 4 tl4/2] 4 slog s + tlogt) time.
However, becaus# is not a random subset &f U T', the expected running time for this algorithm can be
worse. An adversary could chooSen such a way that inserting the verticesiofs slow.

Prove that the expected time to incrementally insert théogs of ' is in O(t\%/2! + t1ogt + tsl4/2]).
(For asymptotic purposes, treat the dimensi@s a small fixed constant.)

Some hints.

e You may safely assume that the time spent making structbeadges does not exceed the time spent
updating the visibilities (conflict graph), and analyzeyathie latter.

e The technique presented in class for analyzing the expeatatdng time works here as well, with
several differences. First, defing am)-facet to be a facet with stoppers ifil", m triggers inT’, and
d — m triggers inS. (Facets with stoppers ifi will never appear, so we can ignore them.) Define a
(< j,m)-facet likewise, having< j stoppers. Adapt the random sampling technique used in tass
show that the number ¢K j, m)-facets is

Fj,m cO <jm8|-d/2J +jm—_d/2Jt_d/2J)

for j > 1. (Obviously,Fp ., € O((s + t)L9/2]).) Figure out the probability that @& 7, m)-facet will
appear at some time during the algorithm. Find the sum ofigilbNities created.

e Alternatively, you could adapt the proof in Section 9 of Sf&lpaper. The changes to the analysis
arise because the sefsandT’ might be chosen (by an adversary) so the uninserted vedfcE<an
see a larger-than-usual number of facets, and the insegitides of7" have much higher average
degree than the vertices 8f This is why the time complexity can exceéd (s + t)14/2]).

oY, 1<1+nn

o Y m= %2. Likewise,> ¢, % converges for any > 2.

i=1 4P

