
CS 274
Computational Geometry (Spring 2013)

Homework 3

Homework 3 is dueat the start of class (2:40 pm) on Wednesday, April 3, 2013.

You may use algorithms learned in class as subroutines without re-explaining them. For any problem that
requests an algorithm that runs inO(f(n)) time for some functionf(n), expected O(f(n)) time will do.

[1] Levels in arrangements (2 points). Is it possible for an arrangement of lines, no twoparallel, to have a
vertex of level 2 but no vertex of level 1? Explain.

[2] Stabbing vertical segments (4 points). LetS be a set ofn vertical line segments in the plane. Describe
an algorithm that determines whether there exists a line that intersects every segment inS, and identifies
such a line if one exists. For full points, your algorithm should run in linear time.

[3] Axis-aligned ray-shooting queries (3 points). LetS be a set of segments in the plane, which can
intersect only at their endpoints. Explain how to preprocess S in O(n logn) time so that queries of the
following form may be answered inO(logn) time: given a pointp, give the first segment struck by each of
four rays shot fromp directly up, down, to the left, and to the right. The query should report four segments,
in that order. If a ray hits an endpoint of multiple segments,report any one of those segments. If a ray goes
on forever without hitting a segment, report that. Ifp lies on a segment ofS, report that segment for all four
rays.

[4] Point in star-shaped polygon (8 points). A simple polygonP is calledstar-shaped if there exists a
pointp ∈ P such that for every pointq ∈ P , the line segmentpq lies inP . Hence,p can “see” any point in
P by a line of sight entirely inP . You are given a simple star-shaped polygonP , described as an array ofn
vertices in counterclockwise order aboutP .

(i) Suppose you know a pointp that can see all ofP . Describe an algorithm that determines whether a
pointq is inP in O(logn) time (with no preprocessing).

(ii) Suppose you don’t know a pointp that can see all ofP . Describe an optimal algorithm for finding
one, and give its running time. (Hint: this is a one-liner.)

(iii) Explain why no algorithm can find one faster. (Hint: this isnot a reduction from sorting. Show that
the algorithm must examine the entire input, or at least someconstant fraction of it. A few examples
where small differences between two polygons lead to completely different answers will help your
explanation.)

(iv) Can your algorithm from part (ii) also determinewhether a simple polygonP is star-shaped? Does
your algorithm extend to three-dimensional polyhedra? Briefly justify your answers to both these
questions.

[5] Packing disks (5 points). LetD be a set of disks of radiusr in the plane, which represent atoms. (A
disk is a set of points consisting of the points on a circle and all the points inside it.) The disks inD may
partly overlap each other (due to molecular bonds). LetR be an axis-aligned rectangle.

We wish to determine whether it is possible to place another disk d of radiuss (representing a catalyst)
such thatd lies insideR and does not overlap any disk inD. (It is okay if d touches a disk inD, or the
boundary ofR, at a single point.)

Give anO(n logn)-time algorithm for doing this, wheren is the number of disks inD. (Hint: what data
structure makes this computation straightforward?)

1

[6G] Worst-case time for linear programming (2 points). If you have bad luck with the random numbers,
the worst-case running time for Seidel’s randomized linearprogramming algorithm in the plane isΘ(n2).
Suppose you are given a fixed set ofn distinct halfplanes and a linear objective function, such that the linear
program is not unbounded. Is there always a way to order thesehalfplanes so that the algorithm requires
Ω(n2) time? If so, explain how to construct an ordering (givenany fixed set ofn halfplanes). If not, give an
example (that extends to arbitrarily largen) in which all orderings lead to ano(n2) run time.

[7G] Linear programs with multiple optima (6 points). A linear program can have an infinite number of
solutions. In general, the set of solutions is ak-face of the feasible region with0 ≤ k < d, whered is the
dimensionality of the space.

You are given a linear program in which the number of variables d is small enough to use Seidel’s
algorithm. The algorithm finds the lexicographically maximum solution in expectedO(n) time. Suppose
you want to findall the solutions. Pretend that numerical robustness is not an issue.

(i) Give a linear-time algorithm that determines whether there is more than one solution, and if so, iden-
tifies two vertices of the solutionk-face. (Hint: I know several answers to this question, one ofwhich
fits in one sentence.)

(ii) Generalize your solution to part (i) so that, if you knowi ≤ k affinely independent vertices of the
solutionk-face, you can find another one inO(n) time.

(iii) Once you’ve foundk+1 affinely independent optima, you’ll notice that they all have some active con-
straints in common. Use this operation to describe how to compute the solutionk-face inO(n⌊k/2⌋)
time.

[8G] Dividing points (5 points). LetR andG be two sets of points in the plane, called the red and green
points, respectively. Letn = |R|+ |G| be the total number of red and green points.

(i) Describe an algorithm that preprocessesR andG in O(n2) time (or better) so that we can answer
the following query inO(n) time: given a query pointp, return a line that passes throughp and has
the same number of red points on one side of it as the number of green points on the other side of it;
or report that no such line exists. For this problem, you are restricted to the decision-tree model of
computation. (It would be easy to answer the query with radixsort and no preprocessing—except that
the slope of a line through two points, being a rational number, isn’t really amenable to exact radix
sort.)

(ii) Describe an algorithm that preprocessesR andG in O(n2 logn) time so that we can answer the
following query inO(logn) time: given a query lineℓ, determine whetherℓ has the same number
of red points on one side of it as the number of green points on the other side of it. (You’ll get a
bonus point if you can explain how to do it with justO(n2) preprocessing time, and prove that your
preprocessing is that fast.)

2

