CS 274
Computational Geometry (Spring 2013)
Homework 3

Homework 3 is dueat the start of class (2:40 pm) on Wednesday, April 3, 2013.

You may use algorithms learned in class as subroutines uiitleeexplaining them. For any problem that
requests an algorithm that runsdh f (n)) time for some functioryf (n), expected O(f(n)) time will do.

[1] Levelsin arrangements (2 points). Is it possible for an arrangement of lines, no pacellel, to have a
vertex of level 2 but no vertex of level 1? Explain.

[2] Stabbing vertical segments (4 points). LetS be a set oh vertical line segments in the plane. Describe
an algorithm that determines whether there exists a lineith@rsects every segment i and identifies
such a line if one exists. For full points, your algorithm sltbrun in linear time.

[3] Axis-aligned ray-shooting queries (3 points). LetS be a set of segments in the plane, which can
intersect only at their endpoints. Explain how to preprecgsn O(nlogn) time so that queries of the
following form may be answered i (logn) time: given a poinp, give the first segment struck by each of
four rays shot fromp directly up, down, to the left, and to the right. The querywddaeport four segments,

in that order. If a ray hits an endpoint of multiple segmergport any one of those segments. If a ray goes
on forever without hitting a segment, report thatp lfes on a segment o, report that segment for all four
rays.

[4] Point in star-shaped polygon (8 points). A simple polygorP is calledstar-shaped if there exists a
pointp € P such that for every point € P, the line segmenig lies in P. Hencep can “see” any point in
P by a line of sight entirely inP. You are given a simple star-shaped polygardescribed as an array of
vertices in counterclockwise order abaduit

(i) Suppose you know a poinptthat can see all oP. Describe an algorithm that determines whether a
pointq is in P in O(logn) time (with no preprocessing).

(i) Suppose you don’t know a pointthat can see all of. Describe an optimal algorithm for finding
one, and give its running time. (Hint: this is a one-liner.)

(iii) Explain why no algorithm can find one faster. (Hint: $his not a reduction from sorting. Show that
the algorithm must examine the entire input, or at least soonstant fraction of it. A few examples
where small differences between two polygons lead to cowlyleifferent answers will help your
explanation.)

(iv) Can your algorithm from part (ii) also determiménether a simple polygonP is star-shaped? Does
your algorithm extend to three-dimensional polyhedra?efBrijustify your answers to both these
guestions.

[5] Packing disks (5 points). LetD be a set of disks of radiusin the plane, which represent atoms. (A
disk is a set of points consisting of the points on a circle andhalfoints inside it.) The disks i may
partly overlap each other (due to molecular bonds).R &k an axis-aligned rectangle.

We wish to determine whether it is possible to place anotlskrdlof radiuss (representing a catalyst)
such thatd lies insideR and does not overlap any disk in. (It is okay if d touches a disk irD, or the
boundary ofR, at a single point.)

Give anO(n log n)-time algorithm for doing this, whereis the number of disks ifv. (Hint: what data
structure makes this computation straightforward?)

[6G] Wor st-casetimefor linear programming (2 points). If you have bad luck with the random numbers,
the worst-case running time for Seidel’s randomized lifgagramming algorithm in the plane &(n?).
Suppose you are given a fixed setadistinct halfplanes and a linear objective function, suwt the linear
program is not unbounded. Is there always a way to order thal§glanes so that the algorithm requires
Q(n?) time? If so, explain how to construct an ordering (giaey fixed set ofn. halfplanes). If not, give an
example (that extends to arbitrarily larggin which all orderings lead to as(n?) run time.

[7G] Linear programswith multiple optima (6 points). A linear program can have an infinite number of
solutions. In general, the set of solutions i&-face of the feasible region with < k < d, whered is the
dimensionality of the space.

You are given a linear program in which the number of varialles small enough to use Seidel's
algorithm. The algorithm finds the lexicographically maxim solution in expected(n) time. Suppose
you want to findall the solutions. Pretend that numerical robustness is nasar i

(i) Give a linear-time algorithm that determines whetheréhis more than one solution, and if so, iden-

tifies two vertices of the solutiok-face. (Hint: | know several answers to this question, onglath
fits in one sentence.)

(i) Generalize your solution to part (i) so that, if you knaw< k affinely independent vertices of the
solutionk-face, you can find another one@(n) time.

(iif) Once you've foundk +1 affinely independent optima, you'll notice that they all Baome active con-
straints in common. Use this operation to describe how topeaenthe solutiork-face inO(nl#/2))
time.

[8G] Dividing points (5 points). LetR andG be two sets of points in the plane, called the red and green
points, respectively. Let = |R| + |G| be the total number of red and green points.

(i) Describe an algorithm that preprocesgesind G in O(n?) time (or better) so that we can answer
the following query inO(n) time: given a query poing, return a line that passes througland has
the same number of red points on one side of it as the numbeeehgoints on the other side of it;
or report that no such line exists. For this problem, you astricted to the decision-tree model of
computation. (It would be easy to answer the query with radixand no preprocessing—except that
the slope of a line through two points, being a rational numise’t really amenable to exact radix
sort.)

(i) Describe an algorithm that preprocessesand G in O(n?logn) time so that we can answer the
following query inO(logn) time: given a query lin€, determine whethef has the same number
of red points on one side of it as the number of green pointdherother side of it. (You'll get a
bonus point if you can explain how to do it with jusP(n?) preprocessing time, and prove that your
preprocessing is that fast.)

