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but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
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Q1. [48 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [4 pts] We seek to find w ∈ Rd that minimizes a real-valued cost function J(w). We know that J is continuous and
smooth, and it has one and only one global minimum. (There are no other constraints on J.) Select the true statements
about gradient descent on J.

⃝ A: A step of gradient descent is w← w + ϵ∇J(w),
where ϵ > 0 is the step size.

⃝ B: The gradient descent algorithm will always con-
verge to the global minimum of J if the step size ϵ is
sufficiently small.

 C: If the global minimum of J is at the vector w∗,
steps of gradient descent on J starting from w = w∗

will never change w.

⃝ D: A step of gradient descent never causes J(w) to
increase.

A is ascent, not descent. (The sign is wrong.) B is wrong because we might land in a local minimum that is not the global
minimum. C is correct because ∇J(w∗) = 0, so a step of gradient descent does not change w. D is wrong because an excessively
large step size can cause J to increase; see Lecture 5 for an example.

(b) [4 pts] Which statements are true for every symmetric, real matrix S ∈ Rn×n?

 A: All the eigenvalues of S are real.

⃝ B: S can be written as S = A2, where A is sym-
metric and belongs to Rn×n.

⃝ C: If S is positive semidefinite, then S is invertible.

 D: If all the eigenvalues of S are strictly less than
zero, then S is invertible.

A is a standard result, part of the spectral theorem. For a counterexample to B, consider −I. In general, no matrix with a
negative eigenvalue can be written as A2. For a counterexample to C, consider 0n×n. D is correct, because a matrix is invertible
if and only if zero is not an eigenvalue of it. (To see that S has an inverse, consider the eigendecomposition S = UΛU⊤. Then
S −1 = UΛ−1U⊤. As there are no zeros on the diagonal of Λ, Λ−1 exists; just take the reciprocal of each diagonal element of Λ.)

(c) [4 pts] You are given a two-class classification problem with the training points below. For each feature below, select it if
adding it as a third feature (alongside x1 and x2) would make the two classes linearly separable.

⃝ A: x2
2

 B: ||x||2

 C: ||x||32

⃝ D: x1 + x2
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Choice A is incorrect since the points close to the x1-axis (where x2 is close to zero) still won’t be linearly separable. B and
C are correct because they permit the decision boundary to be a circle, centered at the origin, separating the orange and blue
points. Choice D gives us no additional power at all.

(d) [4 pts] Which statements are true of Gaussian discriminant analysis for two-class classification, specifically quadratic
discriminant analysis (QDA) and linear discriminant analysis (LDA)? (Assume that there are no added features.)

⃝ A: QDA for isotropic Gaussians (i.e., with the
same variance in all directions) becomes the centroid
method when the prior probabilities of the two classes
are equal.

 B: QDA is more likely to overfit than LDA when
the number of training points is small.

 C: LDA for isotropic Gaussians (i.e., with the
same variance in all directions) becomes the centroid
method when the prior probabilities of the two classes
are equal.

⃝ D: LDA for anisotropic Gaussians can produce
nonlinear decision boundaries.

• A: No, but LDA does. QDA doesn’t because the covariance matrices usually differ.

• B: Yes. QDA is more likely to overfit than LDA because it has
d(d + 3)

2
parameters, while LDA only has d+1 parameters.

• C: Yes; see Lecture 7.

• D: No. LDA can only give nonlinear boundaries with added features.

(e) [4 pts] You trained a classifier whose ROC curve appears below. You would like to correctly classify points that are
in-class, but you don’t care what labels you assign to points that are out-of-class. In other words, your (asymmetric) loss
function is 1 when your prediction is z = −1 and the true label is y = 1; otherwise, the loss is zero. The four red points
below signify four classifiers. Of the four classifiers, which one has the lowest empirical risk on the test points?

⃝ A: Classifier A

⃝ B: Classifier B

 C: Classifier C

⃝ D: Classifier D

Since there is no loss for a false positive, you simply want to maximize the true positive rate to incur the least expected loss.
That corresponds to the highest point on the vertical axis, which is C.

(f) [4 pts] Consider a regression algorithm whose cost function J(w) is twice differentiable (continuous and smooth) for all
w ∈ Rd. (There are no other constraints on J). Consider also a second cost function K(w) = J(w) + λ∥w∥2, which adds
ℓ2 regularization to J, where λ > 0 is the regularization parameter. Which statements are certain to be true?

⃝ A: The Hessian of K(w) is positive definite for all
w ∈ Rd.

⃝ B: A step of gradient descent on K will move as
far or farther than a step of gradient descent on J (with
the same starting point w and learning rate ϵ for both).
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 C: ℓ2 regularization reduces the variance of the
regression method if λ is sufficiently large.

 D: If the origin (i.e., the point w∗ = 0) is a global
minimum of J, then it is the only global minimum
of K.

A would be true if we assumed J is convex, but we don’t, and it’s not. B: No; the gradient of J and the gradient of λ∥w∥2 can
easily point in opposite directions. C: Yes, because in the limit as λ → ∞, w and the variance both approach zero. D: Yes,
because for every point v , 0, K(v) > J(v) ≥ J(0) = K(0).

(g) [4 pts] We are given a set of linearly separable training points of two classes, with at least one point in each class. We find
the maximum margin classifier for these points—that is, we successfully train a hard-margin support vector machine
(with the usual constrants, yi(Xi · w + α) ≥ 1). Which statements are true?

⃝ A: In the maximum margin classifier, at least one class has at least two support vectors.

 B: The maximum margin classifier is always unique.

⃝ C: The weight vector w for the maximum margin classifier always has Euclidean length (magnitude) 1.

 D: Finding a linear classifier that correctly classifies all the points can be done by solving a linear program, but
finding the maximum margin classifier involves solving a quadratic program whose cost function is not linear.

• A: No, just one support vector in each class is sufficient for uniqueness.

• B: Yes; so long as there is at least one point of each class, the maximum margin classifier is the unique hyperplane that
bisects the shortest line segment connecting the convex hull of the points in the first class to the convex hull of the points
in the second class.

• C: No; the length of the weight vector is the reciprocal of the width of the maximum margin.

• D: Yes; see Lectures 4 and 5.

(h) [4 pts] Given an n × d design matrix X and a vector of labels y ∈ Rn, we perform least-squares linear regression—that
is, we find a w that minimizes ∥Xw − y∥2. Which statements are true of every minimizer w∗?

⃝ A: Every minimizer can be written as w∗ = X+y + z for some z ∈ Row X.

⃝ B: Every minimizer can be written as w∗ = X+y + z for some z ∈ Col X.

 C: Every minimizer can be written as w∗ = X+y + z for some z ∈ Null X.

⃝ D: Every minimizer can be written as w∗ = X+y + z for some z ∈ Null X⊤.

We showed in Discussion 6 that every solution to X⊤Xw = X⊤y can be written in the form w = w0 + z where w0 = X+y is the
unique solution in the row space of X and z is some component in the null space of X.

(i) [4 pts] Which statements are true about ridge regression and Lasso (with λ > 0 for both).

⃝ A: Ridge regression has a unique solution if and
only if the design matrix has full rank.

 B: There are points in feature space where the
gradient of Lasso’s cost function is not defined.

⃝ C: Ridge regression can be formulated as a linear
programming problem.

 D: One of Lasso’s virtues is its tendency to set
some weights to zero.

• A: Incorrect. Ridge regression always has a unique solution no matter the rank of X.
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• B: Correct. At any point where some coordinate xi is zero, the directional derivative of Lasso’s cost function is undefined
in the direction of the xi-axis.

• C: Incorrect, the objective function of ridge regression is quadratic.

• D: Of course.

(j) [4 pts] Two classes of observations are drawn from two univariate normal distributions: D1 = N(µ1, σ
2
1) for class 1 and

D2 = N(µ2, σ
2
2) for class 2. We know the parameters and prior probabilities of each class (the priors may or may not be

equal), and we construct their Bayes classifier (with a 0-1 loss function). Which statements are true of the Bayes optimal
decision boundary?

 A: It might be ∅ (no points).

 B: It might have exactly two points.

⃝ C: It might have exactly three points.

⃝ D: It might have exactly ten points.

The Bayes optimal decision boundary consists of the real roots of a quadratic equation, so it cannot have more than two points.
It is easy to exhibit the zero-point and two-point cases by choosing the parameters accordingly. Note that the zero-point case
requires the two distributions to have different prior probabilities. The two-point case is easier to see if you give the two
distributions different variances.

(k) [4 pts] Which of the following classifiers are guaranteed to assign the same classes to the test data if we apply to all points
(training and test points) an invertible linear transformation that whitens the training points? (By “the same classes,” we
mean the same predictions as if we didn’t whiten the data.)

⃝ A: Soft-margin support vector machine

⃝ B: k-nearest neighbor classifier

 C: Quadratic discriminant analysis

 D: Linear discriminant analysis

• A: The soft-margin SVM cost function is influenced by the magnitudes of the features, so rescaling features can change
their influence on the decision boundary. Whitening can stretch space in some directions and shrink it in others.

• B: Whitening changes distances between points in an anisotropic fashion, so a point’s nearest neighbor can change.

• C: Whitening the data also whitens the sample means and covariances, thus any point in the whitened space will still
have the same posterior probability as the corresponding un-whitened point in the original space.

• D: The sample covariance is shared across all classes in LDA, but whitening will also whiten it proportionally, so the
same argument as QDA applies.

(l) [4 pts] Consider a continuous uniform distribution U[0, b], from which we draw a random real number between
0 and b. The probability density function (PDF) ofU[0, b] is

f (x) =
{

1/b 0 ≤ x ≤ b,
0 otherwise.

We want to use maximum likelihood estimation to estimate the parameter b. We draw three points at random from
U[0, b] and obtain x1 = 44.4, x2 = 8, and x3 = 41.2. What is the maximum likelihood estimate b̂ of b?

⃝ A: b̂ = 44.4 + 8 + 41.2.

 B: b̂ = 44.4.

⃝ C: b̂ = (44.4 + 8 + 41.2)/3.

⃝ D: b̂ =
4
3
· 44.4.

MLE chooses b̂ to maximize L(b) = f (x1) f (x2) f (x3), which equals 1/b3 if b ≥ 44.4 and zero otherwise. Hence, b̂ = 44.4.

Extra space: if you need extra space for your answer to a written problem on pages 5–7, you may write here. Be sure to write
“see page 4” under the unfinished answer!
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Q2. [18 pts] Optimizing Huber Loss
Given a vector prediction z ∈ Rk, a vector true label y ∈ Rk, a fixed constant δ > 0,
and the ℓ2-norm ∥v∥ =

√
v⊤v, the Huber ℓ2-loss function is

Lδ(z, y) =

 1
2∥z − y∥2, ∥z − y∥ ≤ δ,
δ · (∥z − y∥ − 1

2δ), otherwise.

At right is a plot of L1(z, 0) for k = 2. This loss can be used for regression where
the regression function returns a k-dimensional vector.

The Huber ℓ2-loss is designed to be similar to the loss function ∥z − y∥ (i.e., the Euclidean distance, which in 1D we call the
absolute loss); but unlike the Euclidean distance, it is smooth at the minimum, z = y. For a fixed y, the Huber ℓ2-loss is quadratic
in z in a small region near y, but it is shaped like a cone farther away from y. The Huber ℓ2-loss is continuous and convex.

(a) [7 pts] Compute the gradient ∇zLδ(z, y) of the ℓ2-Huber loss (for a fixed δ and y).

∇zLδ(z, y) =

z − y, ∥z − y∥ ≤ δ,
δ
∥z−y∥ (z − y), otherwise.

(The second case is the tricky one. Recall that ∥z − y∥ = (∥z − y∥2)1/2, so by the chain rule, ∂
∂z ∥z − y∥ = 1

2 (∥z − y∥2)−1/22(z − y).)

(b) [4 pts] If we optimize z with gradient descent on Lδ (for a fixed y), what learning rate (step size) ϵ guarantees that we
will eventually reach the exact minimum (rather than just inching closer and closer forever)? Why?

ϵ = 1, because it ensures that gradient descent from any point z in the parabolic regions jumps directly to y. (In that region, the
gradient descent rule is z← z − ϵ(z − y).)

(c) [2 pts] Suppose we use Newton’s method to find a z that minimizes the ℓ2-Huber loss. (Technically, the Hessian of Lδ
with respect to z is not defined where ∥z− y∥ = δ, but we fix that by simply using the Hessian of 1

2∥z− y∥2 at those points.)

If we start at a point z = z0 that satisfies ∥z0 − y∥ < δ, what will the value of z be after one step of Newton’s method?
Why?

One step of Newton’s method will set z = y, because Newton’s method approximates the function 1
2 ∥z− y∥2 with the paraboloid

1
2 ∥z − y∥2 (i.e., the same function) and jumps directly to the bottom of the parabola.

(d) [3 pts] If we start at a point z = z0 that satisfies ∥z0 − y∥ > δ, what will one step of Newton’s method do? Why? (Note:
for this question and the next one, we want a qualitative answer; you don’t need to calculate a Hessian.)

The Hessian is singular, so Newton’s method will fail. [The Hessian has an eigenvalue of zero corresponding to the eigenvector
direction z − y, the direction with no curvature.]

(e) [2 pts] Suppose we add an ℓ2 regularization term λ∥z∥2 to the ℓ2-Huber loss, with λ > 0, and perform one step of Newton’s
method on the ℓ2-regularized ℓ2-Huber loss. How do your answers to (c) and (d) change (qualitatively), and why?

The answer to (c) will no longer be y, unless y happens to be the origin.

The answer to (d) changes because the Hessian will always be positive definite, so Newton’s method will always be able to take
a step. [It won’t reach the minimum in one step, though.]
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Q3. [17 pts] Quadratic Discriminant Analysis
We want to predict whether a person prefers vanilla or chocolate ice cream based on a single feature: their age. We suspect
that the ages of vanilla-lovers are normally distributed, and so are the ages of chocolate-lovers, so we build a classifier with
quadratic discriminant analysis (QDA) and a 0-1 loss function. Our survey of 13 random people turns up 8 vanilla lovers
and 5 chocolate lovers of the following ages.

Vanilla: [21, 26, 27, 28, 30, 30, 31, 31] Chocolate: [15, 18, 21, 22, 24]

(a) [17 pts] Please do QDA. Determine the distribution parameters and prior probabilities of vanilla lovers and chocolate
lovers (as exact, simplified integers or fractions). Then determine the probability that a person of age x prefers vanilla
over chocolate (substituting the numbers so your answer is an exact, simplified function of x, which can include logistic
functions s(·) or exponentials). Also, determine the decision boundary (as one or more numbers written as simplified
expressions, possibly with logarithms and fractions). Show all your work! (Hint: as MNIST taught us, 282 = 784.)

µ̂vanilla =
1
8

(21 + 26 + 27 + 28 + 30 + 30 + 31 + 31) =
1
8

(224) = 28.

σ̂2
vanilla =

1
8

((21 − 28)2 + (26 − 28)2 + (27 − 28)2 + (28 − 28)2 + (30 − 28)2 + (30 − 28)2 + (31 − 28)2 + (31 − 28)2)

=
1
8

(49 + 4 + 1 + 0 + 4 + 4 + 9 + 9) =
1
8

(80) = 10.

π̂vanilla = 8/13.

µ̂chocolate =
1
5

(15 + 18 + 21 + 22 + 24) =
1
5

(100) = 20.

σ̂2
chocolate =

1
5

((15 − 20)2 + (18 − 20)2 + (21 − 20)2 + (22 − 20)2 + (24 − 20)2) =
1
5

(25 + 4 + 1 + 4 + 16) =
1
5

(50) = 10.

π̂chocolate = 5/13.

[1 point for each estimate above, summing to 6 points.]

From here, there are two ways to proceed: you could work out the quadratic discriminant functions, or you could do it the hard
way: by equating the posterior probabilities and plugging in the normal PDFs. [We’ll need a different scoring system for each.]

The quadratic discriminant functions are

Qvanilla(x) = −
∥x − µvanilla∥

2

2σ2
vanilla

− d lnσvanilla + ln πvanilla = −
∥x − 28∥2

20
− d ln

√
10 + ln

8
13
,

Qchocolate(x) = −
∥x − 20∥2

20
− d ln

√
10 + ln

5
13
.

The QDA decision function is Qvanilla(x) − Qchocolate(x) = −
∥x − 28∥2

20
+
∥x − 20∥2

20
+ ln

8
13
− ln

5
13
=

4
5

x −
96
5
+ ln

8
5

.

Hence, the posterior probability that a person of age x prefers vanilla is

P(Y = vanilla|X = x) = s(Qvanilla(x) − Qchocolate(x)) = s
(

4
5

x −
96
5
+ ln

8
5

)
.

You could stop here and get all the points for the posterior probability, or you could simplify a bit more. For example,

P(Y = vanilla|X = x) =
1

1 + e−4x/5+96/5−ln(8/5) =
1

1 + 5e−4x/5+96/5/8
.

[6 points for writing the correct posterior probability in a form as simple as these, with a sliding scale for increasing less
simplified or correct variants as well as variants where not all the substitutions were made. 5 points of partial credit for writing
the decision function in a simplified, correct form with all substitutions. If that is not earned, 2 points of partial credit for
expressing Qvanilla(x) in the simplest possible form and 2 more for Qchocolate(x).]
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The decision boundary is the set of points where the decision function is zero. That is,

x = 24 −
5
4

ln
8
5

years old.

(FYI, this is approximately 23.41. Note that this can also be written x = 24 + 5
4 ln 5

8 .)

[5 points for writing the correct decision boundary in the simplest possible form, with a sliding scale for increasing less
simplified or correct variants as well as variants where not all the substitutions were made. 2 points of partial credit for simply
setting the decision function to zero, or setting Qvanilla(x) = Qchocolate(x).]

Here’s the more tedious alternative solution, which equates the posterior probabilities. First we find the decision boundary.

P(Y = chocolate|X = x) = P(Y = vanilla|X = x)
f (X|Y = chocolate) π̂chocolate

f (X = x)
=

f (X|Y = vanilla) π̂vanilla

f (X = x)
5

13
√

2π · 10
exp

(
−

(x − 20)2

2 · 10

)
=

8

13
√

2π · 10
exp

(
−

(x − 28)2

2 · 10

)
ln 5 −

(x − 20)2

20
= ln 8 −

(x − 28)2

20

(x2 − 56x + 784) − (x2 − 40x + 400) = 20 ln
8
5

384 − 20 ln
5
8
= 16x

x = 24 −
5
4

ln
8
5

years old.

[5 points for writing the correct decision boundary in the simplest possible form, with a sliding scale, as above. 2 points of
partial credit for simply getting to the second line (equating posteriors + applying Bayes’ Theorem).]

The posterior probability that a person of age x prefers vanilla is

P(Y = vanilla|X = x) =
f (X|Y = vanilla) π̂vanilla

f (X = x)

=
f (X|Y = vanilla) π̂vanilla

f (X|Y = vanilla) π̂vanilla + f (X|Y = chocolate) π̂chocolate

=
1

1 + f (X|Y=chocolate) π̂chocolate
f (X|Y=vanilla) π̂vanilla

=
1

1 +
√

2π·10
√

2π·10
exp

(
−

(x−20)2

2·10

)
exp

(
(x−28)2

2·10

)
5
8

=
1

1 + 5 exp
(

(x2−56x+784)−(x2−40x+400)
20

)
/8

=
1

1 + 5 exp
(
−16x+384

20

)
/8

=
1

1 + 5 exp
(
−4x+96

5

)
/8
.

[6 points for writing the correct posterior probability in a form as simple as this, with a sliding scale, as above. 2 points of partial
credit for simply getting to the second line. If that is not earned, 1 point for simply getting to the first line (Bayes’ Theorem).]
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Q4. [17 pts] Estimating the Noise in Linear Regression
In Lecture 12 we suggested a model of reality in which we want to determine a linear natural law g(z) = v⊤z (g = “ground
truth”) mapping each data point z ∈ Rd to a label in R. (For simplicity, we don’t use a bias term α in this question; assume our
natural law satisfies g(0) = 0.) But the measurements are noisy, so what we get is an n × d design matrix X and a vector y ∈ Rn

of labels such that yi = v⊤Xi + ϵi, where ϵi ∼ N(0, σ2) is random noise (and each ϵi is independent of the others). In class we
applied maximum likelihood estimation (MLE) to justify using the mean of the squared losses as the cost function for linear
regression to compute a weight vector w ∈ Rd that is an estimate of v. Now we will use MLE to estimate σ2, the variance of
the measurement noise.

(a) [5 pts] Write the likelihood function L(σ; y, X, v) for obtaining the labels yi given fixed values of X and v. (Note: for the
purposes of this problem, X and v are not random. There should be no µ or other unlisted parameters in your answer.)

L(σ; y, X, v) =
n∏

i=1

1

(
√

2πσ)
exp

(
−

(yi − v⊤Xi)2

2σ2

)
.

(b) [6 pts] Write the log likelihood function ℓ(σ; y, X, v) and find the value of σ2 that maximizes ℓ. Show your work.
(Note: you do not need to prove it’s a maximum.)

ℓ(σ; y, X, v) = −n ln
√

2π − n lnσ −
n∑

i=1

(yi − v⊤Xi)2

2σ2 ,

d
dσ
ℓ(σ; y, X, v) = −

n
σ
+

1
σ3

n∑
i=1

(yi − v⊤Xi)2.

Setting dℓ
dσ = 0 gives the maximizer

σ2 =
1
n

n∑
i=1

(yi − v⊤Xi)2.

(c) [2 pts] What formula that you’re familiar with does your optimal value of σ2 look like? (“The mean variance of the
labels yi” doesn’t count. It’s something else too.)

It happens to be the cost function for linear least-squares regression, if we interpret v as a vector of weights.

(d) [4 pts] Unfortunately, we don’t know the value of v. How should we estimate σ2, given that we cannot obtain v? Write
an estimate of your estimate for σ2 expressed solely in terms of X, y, and n, with no v. (This is your maximum
likelihood estimator σ̂2 for the true σ2.) For full points, write your final answer in matrix notation with no summation.
You may assume that X has rank d.

The weights w computed by least-squares linear regression are our estimate of v. These weights are w = X+y, so we have

σ2 =
1
n

n∑
i=1

(yi − (X+y)⊤Xi)2 =
1
n
∥y⊤ − (X+y)⊤X⊤∥2 =

1
n
∥y − XX+y∥2.

The first formula is worth three points and either of the last two is worth four. As X has rank d, X⊤X is invertible and you can
write w = (X⊤X)−1X⊤y, so we will also accept

σ2 =
1
n

n∑
i=1

(yi − ((X⊤X)−1X⊤y)⊤Xi)2 =
1
n
∥y⊤ − ((X⊤X)−1X⊤y)⊤X⊤∥2 =

1
n
∥y − X(X⊤X)−1X⊤y∥2.
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