
CS 189
Spring 2017

Introduction to
Machine Learning Midterm

• Please do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your one-page cheat sheet.

• Electronic devices are forbidden on your person, including cell phones, iPods, headphones, and laptops. Turn your
cell phone off and leave all electronics at the front of the room, or risk getting a zero on the exam.

• You have 1 hour and 20 minutes.

• Please write your initials at the top right of each page after this one (e.g., write “JS” if you are Jonathan Shewchuk).
Finish this by the end of your 1 hour and 20 minutes.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• The total number of points is 100. There are 20 multiple choice questions worth 3 points each, and 4 written questions
worth a total of 40 points.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right
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Q1. [60 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [3 pts] For a nonconvex cost function J, which of the following step sizes guarantee that batch gradient descent will
converge to the global optimum? Let i denote the ith iteration.

© ε = 10−2

© ε = 10−i

© ε = 1
∇2 J

 None of the above

(b) [3 pts] Which of the following optimization algorithms attains the optimum of an unconstrained, quadratic, convex cost
function in the fewest iterations?

© Batch gradient descent

© Stochastic gradient descent

 Newton’s method

© The simplex method

(c) [3 pts] You train a linear classifier on 10,000 training points and discover that the training accuracy is only 67%. Which
of the following, done in isolation, has a good chance of improving your training accuracy?

 Add novel features

© Train on more data

© Use linear regression

 Train on less data

(d) [3 pts] You train a classifier on 10,000 training points and obtain a training accuracy of 99%. However, when you submit
to Kaggle, your accuracy is only 67%. Which of the following, done in isolation, has a good chance of improving your
performance on Kaggle?

© Set your regularization value (λ) to 0

 Train on more data

 Use validation to tune your hyperparameters

© Train on less data

(e) [3 pts] You are trying to improve your Kaggle score for the spam dataset, but you must use logistic regression with no
regularization. So, you decide to extract some additional features from the emails, but you forget to normalize your new
features. You find that your Kaggle score goes down. Why might this happen?

© The new features make the sample points linearly
separable

 The new features are uncorrelated with the emails
being HAM or SPAM

 The new features have significantly more noise
and larger variances than the old features

 The new features are linear combinations of the
old features

(f) [3 pts] In a soft-margin support vector machine, if we increase C, which of the following are likely to happen?

© The margin will grow wider

© There will be more points inside the margin

 Most nonzero slack variables will shrink

 The norm |w| will grow larger
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(g) [3 pts] If a hard-margin support vector machine tries to minimize |w|2 subject to yi(Xi · w + α) ≥ 2 instead, what will be
the width of the slab (the point-free region bracketing the decision boundary)?

© 1
‖w‖

© 2
‖w‖

 4
‖w‖

© 1
2‖w‖

(h) [3 pts] There is a 50% chance of rain on Saturday and a 30% chance of rain on Sunday. However, it is twice as likely to
rain on Sunday if it rains on Saturday than if it does not rain on Saturday. What is the probability it rains on neither of
the days?

© 15%

© 25%

 40%

© 45%

(i) [3 pts] The Bayes risk for a decision problem is zero when

© the training data is linearly separable after lifting
it to a higher-dimensional space.

 the class distributions P(X|Y) do not overlap.

© the Bayes decision rule perfectly classifies the
training data.

 the prior probability for one class is 1.

(j) [3 pts] Consider using a Bayes decision rule classifier in a preliminary screen for cancer patients, as in Lecture 6. We
want to reduce the probability that someone is classified as cancer-free when they do, in fact, have cancer. On the ROC
curve for the classifier, an asymmetric loss function that implements this strategy

 Picks a point on the curve with higher sensitivity
than the 0-1 loss function.

© Picks a point on the curve with higher specificity
than the 0-1 loss function.

© Picks a point on the curve that’s closer to the y-axis
than the 0-1 loss function.

 Picks a point on the curve that’s further from the
x-axis than the 0-1 loss function.

(k) [3 pts] For which of the following cases are the scalar random variables X1 and X2 guaranteed to be independent?

© X1 ∼ N(0, 1) and X2 ∼ N(0, 1).

 Cov(X1, X2) = 0 and [X1 X2]> has a multivariate
normal distribution.

© E [(X1 − E [X1]) (X2 − E [X2])] = −1

 
[
X1
X2

]
∼ N

([
1
3

]
,

[
3 0
0 7

])

(l) [3 pts] Given X ∼ N(0,Σ) where the precision matrix Σ−1 has eigenvalues λi for i = 1, . . . , d, the isocontours of the
probability density function for X are ellipsoids whose relative axis lengths are

© λi

© 1/λi

©
√
λi

 1/
√
λi

(m) [3 pts] In LDA/QDA, what are the effects of modifying the sample covariance matrix as Σ̃ = (1 − λ)Σ + λI, where
0 < λ < 1?

 Σ̃ is positive definite

© Increases the eigenvalues of Σ by λ

 Σ̃ is invertible

 The isocontours of the quadratic form of Σ̃ are
closer to spherical
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(n) [3 pts] Let w∗ be the solution you obtain in standard least-squares linear regression. What solution do you obtain if you
scale all the input features (but not the labels y) by a factor of c before doing the regression?

 1
c w∗

© 1
c2 w∗

© cw∗

© c2w∗

(o) [3 pts] In least-squares linear regression, adding a regularization term can

 increase training error.

© decrease training error.

 increase validation error.

 decrease validation error.

(p) [3 pts] You have a design matrix X ∈ Rn×d with d = 100,000 features and and vector y ∈ Rn of binary 0-1 labels. When
you fit a logistic regression model to your design matrix, your test error is much worse than your training error. You
suspect that many of the features are useless and are therefore causing overfitting. What are some ways to eliminate the
useless features?

 Use `1 regularization.

 Iterate over features; check if removing feature i
increases validation error; remove it if not.

© Use `2 regularization.

© If the ith eigenvalue λi of the sample covariance
matrix is 0, remove the ith feature/column.

(q) [3 pts] Recall the data model, yi = f (Xi) + εi, that justifies the least-squares cost function in regression. The statistical
assumptions of this model are, for all i,

 εi comes from a Gaussian distribution.

© all yi have the same mean

 all εi have the same mean

 all yi have the same variance

(r) [3 pts] How does ridge regression compare to linear regression with respect to the bias-variance tradeoff?

 Ridge regression usually has higher bias.

© Ridge regression usually has higher irreducible
error.

© Ridge regression usually has higher variance.

 Ridge regression’s variance approaches zero as
the regularization parameter λ→ ∞.

(s) [3 pts] Which of the following quantities affect the bias-variance tradeoff?

 λ, the regularization coefficient in ridge regression

 C, the slack parameter in soft-margin SVM

© ε, the learning rate in gradient descent

 d, the polynomial degree in least-squares regres-
sion

(t) [3 pts] Which of the following statements about maximum likelihood estimation are true?

 MLE, applied to estimate the mean parameter µ
of a normal distributionN(µ,Σ) with a known covari-
ance matrix Σ, returns the mean of the sample points

© MLE, applied to estimate the covariance parameter
Σ of a normal distributionN(µ,Σ), returns Σ̂ = 1

n XT X,
where X is the design matrix

© For a sample drawn from a normal distribution, the
likelihood L(µ, σ; X1, . . . , Xn) is equal to the proba-
bility of drawing exactly the points X1, . . . , Xn (in that
order) when you draw n random points from N(µ, σ)

 Maximizing the log likelihood is equivalent to
maximizing the likelihood
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Q2. [10 pts] Logistic Posterior for Poisson Distributions
Consider two classes C and D whose class conditionals are discrete Poisson distributions with means λC > 0 and λD > 0. Their
probability mass functions are

P(K = k|Y = C) =
λk

C e−λC

k!
, P(K = k|Y = D) =

λk
D e−λD

k!
, k ∈ {0, 1, 2, . . .}.

Their prior probabilities are P(Y = C) = πC and P(Y = D) = πD = 1 − πC. We use the standard 0-1 loss function.

(a) [7 pts] Derive the posterior probability and show that it can be written in the form P(Y = C|K = k) = s( f (k, λC, λD, πC)),
where s is the logistic function and f is another function.

By Bayes’ Theorem, we have

P(Y = C|K = k) =
P(K = k|Y = C) πC

P(K = k|Y = C) πC + P(K = k|Y = D) πD

=
1

1 +
P(K=k|Y=D) πD
P(K=k|Y=C) πC

=
1

1 +
λk

De−λD (1−πC)
λk

Ce−λCπC

=
1

1 + exp
(
−

(
k ln λC

λD
+ λD − λC − ln 1−πC

πC

))
=

1
1 + exp(− f (k, λC, λD, πC))

= s( f (k, λC, λD, πC))

(b) [3 pts] What is the maximum number of points in the Bayes optimal decision boundary? (Note: as the distribution is
discrete, we are really asking for the maximum number of integral values of k where the classifier makes a transition
from predicting one class to the other.)

As f is linear in k, there is only one root, and the decision boundary is a single point.
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Q3. [10 pts] Error-Prone Sensors
We want to perform linear regression on the outputs of d building sensors measured at n different times, to predict the building’s
energy use. Unfortunately, some of the sensors are inaccurate and prone to large errors and, occasionally, complete failure.
Fortunately, we have some knowledge of the relative accuracy and magnitudes of the sensors.

Let X be a n × (d + 1) design matrix whose first d columns represent the sensor measurements and whose last column is all 1’s.
(Each sensor column has been normalized to have variance 1.) Let y be a vector of n target values, and let w be a vector of d + 1
weights (the last being a bias term α). We decide to minimize the cost function

J(w) = ‖Xw − y‖1 + λw>Dw,

where D is a diagonal matrix with diagonal elements Dii (with Dd+1,d+1 = 0 so we don’t penalize the bias term).

(a) [2 pts] Why might we choose to minimize the `1-norm ‖Xw − y‖1 as opposed to the `2-norm |Xw − y|2 in this scenario?

Least-squares regression gives too much power to outliers, which is inappropriate for inaccurate or failing sensors. The
`1-normalized cost function does not try as hard to fit the outliers.

(b) [2 pts] Why might we choose to minimize w>Dw as opposed to |w′|2? What could the values Dii in D represent?

We might want to more heavily penalize the weights associated with the less accurate sensors. Each Dii can be thought
of how much we don’t trust sensor i.

(c) [6 pts] Derive the batch gradient descent rule to minimize our cost function. Hint: let p be a vector with components
pi = sign(X>i w − yi), and observe that ‖Xw − y‖1 = (Xw − y)>p. For simplicity, assume that no X>i w − yi is ever exactly
zero.

∇w(‖Xw − y‖1 + λw>Dw) = ∇w((Xw − y)>p + λw>Dw)
= ∇w(w>X>p − y>p + λw>Dw)
= X>p + 2λDw

Therefore, the update rule is w(t+1) ← w(t) − ε(X>p + 2λDw).
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Q4. [10 pts] Gaussian Discriminant Analysis
Consider a two-class classification problem in d = 2 dimensions. Points from these classes come from multivariate Gaussian
distributions with a common mean but different covariance matrices.

XC ∼ N

(
µ =

[
1
1

]
,ΣC =

[
4 0
0 4

])
, XD ∼ N

(
µ =

[
1
1

]
,ΣD =

[
1 0
0 1

])
.

(a) [5 pts] Plot some isocontours of the probability distribution function P(µ,ΣC) of XC on the left graph. (The particular
isovalues don’t matter much, so long as we get a sense of the isocontour shapes.) Plot the isocontours of P(µ,ΣD) for the
same isovalues (so we can compare the relative spacing) on the right graph.

x

y

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6

x

y

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6

As there are no covariance terms, the isocontours are axis-aligned. As the variances are equal, the isocontours are circles.
The student should make an attempt to demonstrate that they understand that higher standard deviations results in larger
“gaps” between significant isocontours, as below.

(b) [5 pts] Suppose that the priors for the two classes are πC = πD = 1
2 and we use the 0-1 loss function. Derive an equation

for the points x in the Bayes optimal decision boundary and simplify it as much as possible. What is the geometric shape
of this boundary? (Hint: try to get your equations to include the term |x − µ|2 early, then keep it that way.) (Hint 2: you
can get half of these points by guessing the geometric shape.)
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P(Y = 1|X) = P(Y = 2|X)
P(X|Y = 1) πC = P(X|Y = 2) πD

1
2π
√
|ΣC|

exp
(
−

1
2

(x − µ)>Σ−1
C (x − µ)

)
=

1
2π
√
|ΣD|

exp
(
−

1
2

(x − µ)>Σ−1
D (x − µ)

)
1
4

exp
(
−

1
2

1
4
|x − µ|2

)
= exp

(
−

1
2
|x − µ|2

)
−

1
8
|x − µ|2 − ln 4 = −

1
2
|x − µ|2

|x − µ|2 =
8

3 ln 4

This is a circle with center (1, 1) and radius

√
8 ln 4

3
≈ 1.92.
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Q5. [10 pts] Quadratic Functions
(a) [4 pts] Derive the 2×2 symmetric matrix whose eigenvalues are 7 and 1, such that (1, 1) is an eigenvector with eigenvalue

7.

From the eigendecomposition, we have

1
√

2

[
1 −1
1 1

] [
7 0
0 1

]
1
√

2

[
1 1
−1 1

]
=

[
4 3
3 4

]
.

(b) [4 pts] Is the function f (x1, x2) = x4
1 + 2x2

1 + 3x1x2 + 2x2
2 − 7x1 − 12x2 − 18 convex? Justify your answer.

Yes. The Hessian of f is [
4 + 12x2

1 3
3 4

]
,

which, it follows from part (a), is positive definite for all values of x1.

(c) [2 pts] Consider the cost function J(w) for least-squares linear regression. Can J(w) ever be unbounded below? In other
words, is there a set of input sample points X and labels y such that we can walk along a path in weight space for which
the cost function J(w) approaches −∞? Explain your answer.

No. J(w) is a sum of squares, so it never drops below zero.
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