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• The exam is open book, open notes for material on paper. On your computer screen, you may have only this exam,
Zoom, a limited set of PDF documents (see Piazza for details), and four browser windows/tabs: Gradescope, the exam
instructions, clarifications on Piazza, and the form for submitting clarification requests.

• You will submit your answers to the multiple-choice questions directly into Gradescope via the assignment “Final –
Multiple Choice”; please do not submit your multiple-choice answers on paper. If you are in the DSP program and have
been granted extra time, select the “DSP, 150%” or “DSP, 200%” option. By contrast, you will submit your answers to
the written questions by writing them on paper by hand, scanning them, and submitting them through Gradescope via the
assignment “Final – Free Response.”

• Please write your name at the top of each page of your written answers. (You may do this before the exam.) Please start
each top-level question (Q2, Q3, etc.) on a new sheet of paper. Clearly label all written questions and all subparts
of each written question.

• You have 180 minutes to complete the minal exam (3:10–6:10 PM). (If you are in the DSP program and have an
allowance of 150% or 200% time, that comes to 270 minutes or 360 minutes, respectively.)

• When the exam ends (6:10 PM), stop writing. You must submit your multiple-choice answers before 6:10 PM sharp.
Late multiple-choice submissions will be penalized at a rate of 5 points per minute after 6:10 PM. (The multiple-
choice questions are worth 60 points total.)

• From 6:10 PM, you have 15 minutes to scan the written portion of your exam and turn it into Gradescope via the
assignment “Final – Free Response.” Most of you will use your cellphone/pad and a third-party scanning app. If you
have a physical scanner, you may use that. Late written submissions will be penalized at a rate of 10 points per
minute after 6:25 PM. (The written portion is worth 90 points total.)

• Following the exam, you must use Gradescope’s page selection mechanism to mark which questions are on which pages
of your exam (as you do for the homeworks). Please get this done before midnight. This can be done on a computer
different than the device you submitted with.

• The total number of points is 150. There are 15 multiple choice questions worth 4 points each, and six written questions
worth a total of 90 points.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.
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Q1. [60 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [4 pts] Which of the following conditions could serve as a sensible stopping condition while building a decision tree?

© A: Stop if you find the validation error is decreas-
ing as the tree grows

© B: Don’t split a treenode that has an equal number
of sample points from each class

© C: Don’t split a treenode whose depth exceeds a
specified threshold

© D: Don’t split a treenode if the split would cause a
large reduction in the weighted average entropy

(b) [4 pts] Let classifier A be a random forest. Let classifier B be an ensemble of decision trees with bagging—identical to
classifier A except that we do not limit the splits in each treenode to a subset of the features; at every treenode, the very
best split among all d features is chosen. Which statements are true?

© A: After training, all the trees in classifier B must
be identical

© B: Classifier B will tend to have higher bias than
Classifier A

© C: Classifier B will tend to have higher variance
than Classifier A

© D: Classifier B will tend to have higher training
accuracy than Classifier A

(c) [4 pts] We are using an ensemble of decision trees for a classification problem, with bagging. We notice that the decision
trees look too similar. We would like to build a more diverse set of learners. What are possible ways to accomplish that?

© A: Increase the size of each random subsample

© B: Decrease the size of each random subsample

© C: Apply normalization to the design matrix first

© D: Sample without replacement

(d) [4 pts] Suppose we have a feature map Φ and a kernel function k(Xi, X j) = Φ(Xi) ·Φ(X j). Select the true statements about
kernels.

© A: If there are n sample points of dimension d, it takes O(nd) time to compute the kernel matrix

© B: The kernel trick implies we do not compute Φ(Xi) explicitly for any sample point Xi

© C: For every possible feature map Φ : Rd → RD you could imagine, there is a way to compute k(Xi, X j) in O(d)
time

© D: Running times of kernel algorithms do not depend on the dimension D of the feature space Φ(·)

(e) [4 pts] Which of the following are benefits of using the backpropogation algorithm to compute gradients?

© A: Its running time is linear in the total number of units (neurons) in the network

© B: It can be applied to any arithmetic function (assuming the directed computation graph has no cycles and we
evaluate the gradient at a point where the gradient exists)

© C: Compared to naive gradient computation, it improves the speed of each iteration of gradient descent by
eliminating repeated computations of the same subproblem

© D: Compared to naive gradient computation, it reduces the number of iterations required to get close to a local
minimum, by protecting against sigmoid unit saturation (vanishing gradients)
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(f) [4 pts] Which of the following are benefits of using convolutional neural networks—as opposed to fully connected ones—
for image recognition tasks?

© A: The ability to express a wider variety of more
complicated functions of the input features

© B: Fewer model architecture hyperparameters for
the designer to select

© C: Enables the network to more easily learn and
recognize features regardless of their position in the
image

© D: Typically requires less data to train well

(g) [4 pts] Select the correct statements about principal component analysis (PCA).

© A: PCA is a method of dimensionality reduction

© B: If we select only one direction (a one-dimensional subspace) to represent the data, the sample variance of the
projected points is zero if and only if the original sample points are all identical

© C: The orthogonal projection of a point x onto a unit direction vector w is (x>w)w

© D: If we select only one direction (a one-dimensional subspace) to represent the data, PCA chooses the eigen-
vector of the sample covariance matrix that corresponds to the least eigenvalue

(h) [4 pts] Consider a centered design matrix X ∈ Rn×d, where Xi ∈ R
d is the i-th sample point (a column vector) and

X>i is the i-th row of X. Which of these optimization problems is a correct formulation of finding the first principal
component v?

© A: Subject to ‖v‖2 = 1, find v ∈ Rd that minimizes∑n
i=1 ‖Xi − vv>Xi‖

2
2

© B: Find v ∈ Rd that minimizes
v>X>Xv
‖v‖22

© C: Subject to ‖v‖2 = 1, find v ∈ Rd that maximizes∑n
i=1 ‖Xi − vv>Xi‖

2
2

© D: Find v ∈ Rd that maximizes
v>X>Xv
‖v‖22

(i) [4 pts] Consider a centered design matrix X ∈ Rn×d and its singular value decomposition X = UDV>. X has d principal
components, which are found by principal components analysis (PCA). Which statements are correct?

© A: The row space of X (if not trivial) is spanned
by some of the principal components

© B: The null space of X (if not trivial) is spanned
by some of the principal components

© C: The principal components are all right singular
vectors of X

© D: The matrix UD lists the principal coordinates
of every sample point in X

(j) [4 pts] Select the correct statements about the Fiedler vector.

© A: The Fiedler vector is the eigenvector of the
Laplacian matrix that is associated with the smallest
eigenvalue

© B: The Fiedler vector always satisfies the balance
constraint (as written as an equation)

© C: The Fiedler vector is a solution to the unrelaxed,
NP-hard optimization problem

© D: The sweep cut is a spectral graph partitioning
technique that tries n− 1 different cuts (in an n-vertex
graph) and picks one of them.

3



(k) [4 pts] Consider the optimization problem of finding q ∈ Rr that minimizes ‖y− XPq‖22 + λ‖q‖22, where λ > 0, X ∈ Rn×d is
a design matrix, y ∈ Rn is a vector of labels, and P ∈ Rd×r is an arbitrary matrix with r < d. This problem has one unique
solution. Which of the following is that one unique solution?

© A: q = (P>X>XP + λI)−1P>X>y

© B: q = (X>P>PX + λI)−1P>X>y

© C: q = (P>X>XP + λI)−1X>y

© D: q = (X>P>PX + λI)−1X>y

(l) [4 pts] Select the correct statements about AdaBoost.

© A: “Ada” stands for “adaptive,” as the meta-learner
adapts to the performance of its learners

© B: AdaBoost works best with support vector ma-
chines

© C: At test/classification time, AdaBoost computes
a weighted sum of predictions

© D: AdaBoost can transform any set of classifiers
to a classifier with better training accuracy

(m) [4 pts] Select the correct statements about AdaBoost.

© A: When we go from iteration t to iteration t + 1, the weight of sample point Xi is increased if the majority of
the t learners misclassify Xi.

© B: Unlike with decision trees, two data points that are identical (Xi = X j) but have different labels (yi , y j) can
be classified correctly by Adaboost.

© C: AdaBoost can benefit from a learner that has only 5% training accuracy.

© D: If you train enough learners and every learner achieves at least 51% validation accuracy, Adaboost can always
achieve 100% validation accuracy.

(n) [4 pts] In which of the following cases should you prefer k-nearest neighbors over k-means clustering? For all the four
options, you have access to images X1, X2, . . . , Xn ∈ R

d.

© A: You do not have access to labels. You want to find out if any of the images are very different from the rest,
i.e., are outliers.

© B: You have access to labels y1, y2, . . . , yn telling us whether image i is a cat or a dog. You want to find out
whether the distribution of cats is unimodal or bimodal. You already know that the distribution of cats either has
either one or two modes, but that’s all you know about the distribution.

© C: You have access to labels y1, y2, . . . , yn telling us whether image i is a cat or a dog. You want to find out
whether a new image z is a cat or a dog.

© D: You have access to labels y1, y2, . . . , yn telling us whether image i is a cat or a dog. Given a new image z, you
want to approximate the posterior probability of z being a cat and the posterior probability of z being a dog.

(o) [4 pts] Select the correct statements about the k-nearest neighbor classifier.

© A: For exact nearest neighbor search in a very
high-dimensional feature space, generally it is faster
to use exhaustive search than to use a k-d tree.

© B: When using a k-d tree, approximate nearest
neighbor search is sometimes substantially faster than
exact nearest neighbor search.

© C: When using exhaustive search, approximate
nearest neighbor search is sometimes substantially
faster than exact nearest neighbor search.

© D: Order-k Voronoi diagrams are widely used in
practice for k-nearest neighbor search (with k > 1) in
a two-dimensional feature space.
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Q2. [20 pts] A Decision Tree

The decision tree drawn above stores sample points from two classes, A and B. The tables indicate the number of sample points
of each class stored in each leaf node.

(a) [4 pts] What is entropy at the root (Treenode 0)? Simplify your answer if possible, but you don’t need to compute
logarithms.

(b) [6 pts] What is the information gain of the split at the root node (Treenode 0)? Show your work so we understand how
you got that answer. Simplify your answer as much as possible, but again, you don’t need to compute logarithms.

(c) [2 pts] What is the training accuracy of the tree?

(d) [4 pts] How can we increase the decision tree’s training accuracy? Give a reasonable explanation for why we might have
considered doing that but decided not to do that. (“Because we set a limit” is not a valid answer; we’re looking for the
underlying reason why we would set a limit.)

(e) [4 pts] Suppose I told you that we did increase the decision tree’s training accuracy in the way you suggest in part (d), but
when training completed, the decision tree training algorithm decided to revert to this tree in the end anyway. Explain
how that might happen and why it might be the right thing to do.
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Q3. [20 pts] The Singular Value Decomposition
We want you to compute (by hand) part of the singular value decomposition (SVD) X = UDV> of the matrix

X =

 1 0
0 1
−1 −1

 .
(a) [6 pts] One way to compute the SVD by hand is to exploit the relationship between the singular values of X and the

eigenvalues of a related symmetric matrix. What symmetric matrix has eigenvalues related to the singular values of X?
Compute that matrix, write down its characteristic polynomial and simplify it, and determine its eigenvalues. Show your
work!

(b) [4 pts] What is the relationship between the singular values of X and the eigenvalues of your symmetric matrix? Use that
relationship to write down the two specific singular values of X.

(c) [5 pts] Generalize your answer above. For any matrix Z (not only X), what symmetric matrix has eigenvalues related
to the singular values of Z? Prove that every singular value of Z can be identified by looking at the eigenvalues of the
matrix your method constructs.

(d) [5 pts] Explicitly write down enough eigenvectors of your symmetric matrix to form a complete basis for the space. (Hint:
the symmetry of your matrix should make it easy to guess eigenvectors; then you can confirm that they are eigenvectors.)
Based on these, write down the value of U or V (whichever is appropriate).
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Q4. [10 pts] Maximum Likelihood Estimation of a Mean
In class, we derived the maximum likelihood estimates for the mean and variance of a univariate (or isotropic multivariate)
normal distribution, based on n points sampled independently from that distribution. Then we considered the more general
(anisotropic) multivariate distribution N(µ,Σ), and I told you the MLE estimates without deriving them. Let’s derive the
maximum likelihood estimate for the mean.

We are given n independent sample points X1, X2, . . . , Xn ∼ N(µ,Σ) with d features each, where µ ∈ Rd and Σ ∈ Rd×d is
symmetric and positive definite.

(a) [4 pts] Write out an expression for the likelihood L(µ,Σ; X1, . . . , Xn). (You should substitute in the normal PDF; a
placeholder will only get part marks.) Simplify the expression as much as possible.

(b) [6 pts] Derive the maximum likelihood estimate µ̂ of the distribution mean µ. (You probably already know what its value
should be. If you get it right, it will not depend on Σ.)
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Q5. [20 pts] Kernel Principal Components Analysis
In this problem, we will derive the kernelized version of principal components analysis (PCA). You are given a centered n × d
design matrix X whose rows express the sample points X>1 , X

>
2 , ..., X

>
n , and a feature map Φ that maps each sample point Xi ∈ R

d

to a high-dimensional “lifted” sample point Φ(Xi) ∈ RD, where D � d. Define the kernel function k(Xi, X j) = Φ(Xi)>Φ(X j),
and suppose it takes O(d) time to compute (which is much, much less than D).

The sample covariance matrix of the lifted points in RD is C = 1
n Φ(X)>Φ(X) = 1

n
∑n

i=1 Φ(Xi) Φ(Xi)> ∈ RD×D. (Recall that
Φ(X) ∈ Rn×D. Recall also that our convention is to express each Xi and each Φ(Xi) as a column vector, but these points are
stored as rows of X and Φ(X), respectively, which is why the transpose moved.)

(a) [6 pts] To perform PCA, we want to find the eigenvectors of C with nonzero eigenvalues. However, we don’t ever want
to construct C—it’s way too big! We don’t even want to construct one eigenvector of C! Show that if a vector v ∈ RD is
an eigenvector of C with a nonzero eigenvalue, then v can be expressed as a linear combination of lifted sample points:

that is, v =

n∑
j=1

a jΦ(X j) = Φ(X)>a for some vector a ∈ Rn of “dual” coefficients. Hint: think of the standard definition of

an eigenvector of C, then substitute in the value of C.

(b) [5 pts] Recall that the kernel matrix K = Φ(X) Φ(X)> is the symmetric n × n matrix such that Ki j = k(Xi, X j). In the
circumstance described in part (a), prove that K2a = λnKa. Hint: again start with the standard definition of an eigenvector
of C, then substitute in the value of v from above.

(c) [5 pts] Conversely, suppose that a is an eigenvector of K with eigenvalue λa. Show that v = Φ(X)>a is an eigenvector
of C. What is v’s corresponding eigenvalue?

(d) [4 pts] The parts above imply that by finding the eigendecomposition of the kernel matrix K, we can indirectly express the
eigenvectors (that have nonzero eigenvalues) of the kernelized covariance matrix C without ever explicitly computing C
nor any vector of length D. Suppose that we have a test point z ∈ Rd and we want to efficiently compute the principal

coordinate of Φ(z) projected onto a principal component v =

n∑
j=1

a jΦ(X j) = Φ(X)>a. Assume that we have already

computed a. Describe how to compute Φ(z)’s principal coordinate quickly, without ever computing a vector of length
Θ(D) or doing a computation taking Θ(D) time. (Recall our assumption that kernel function computations are much,
much faster than that.)
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Q6. [20 pts] Boosting and 0-1 Loss
(This question has independent parts. If you get stuck on one, try the others. You may use the statements made in the previous
parts for each question. Part (d) is the easiest one. Please show your work!)

Recall that the AdaBoost algorithm computes coefficients βt for classifiers Gt, t ∈ [1,T ], and uses the exponential loss function
L(ρ, `) = e−ρ`, where both the prediction ρ and the label ` are +1 or −1. After t rounds of training, the metalearner’s output is∑t

k=1 βkGk.

Let the sample points be X1, X2, . . . , Xn ∈ R
d with labels y1, y2, . . . , yn ∈ {+1,−1}. Given G1, . . .Gt−1 with coefficients

β1, . . . βt−1, AdaBoost calculates βt and classifier Gt that minimizes the exponential risk R(
∑t

k=1 βkGk) = 1
n
∑n

i=1 L(
∑t

k=1 βkGk(Xi), yi)
of the metalearner output

∑t
k=1 βkGk.

Recall from lecture that w(t)
i is the weight assigned to training point Xi at iteration t; errt =

∑
i:Gt(Xi),yi

w(t)
i is the (weighted) error

rate of classifier Gt; and βt = 1
2 ln

(
1−errt

errt

)
. The initial weights are w(1)

i = 1/n. For the next iteration t + 1, we will assign sample

point Xi a new weight w(t+1)
i =

w(t)
i

Zt
e−βtyiGt(Xi), where Zt =

∑n
i=1 w(t)

i e−βtyiGt(Xi) is a normalization divisor that ensures the weights
in iteration t + 1 sum to 1. (Recall that we introduced this normalization in Homework 7.)

(a) [5 pts] We can write w(t+1)
i = ω L(

∑t
k=1 βkGk(Xi), yi) where ω does not include any wi nor β j terms (but it can include Zk

terms). What is ω?

(b) [4 pts] Show that the exponential risk is R(
∑t

k=1 βkGk) =
∏t

k=1 Zk.

(c) [4 pts] By substituting the values of βk, show that R(
∑t

k=1 βkGk) =
∏t

k=1 2
√

errk(1 − errk).

(d) [7 pts] Although AdaBoost defaults to the exponential loss function L, it is educational to see how boosting behaves
under the 0-1 loss function L01(ρ, `) = 1[ρ , `], which is 1 for incorrect predictions and 0 for correct ones. The main
observation is that boosting reduces the average 0-1 loss just as dramatically as the average exponential loss.

Show that the 0-1 risk R01( f ) = 1
n
∑n

i=1 L01( f (Xi), yi) is less than or equal to the exponential risk R( f ) for any classifier f (·).
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