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4 Soft-Margin Support Vector Machines; Features

SOFT-MARGIN SUPPORT VECTOR MACHINES (SVMs)

Solves 2 problems:
b Hard-margin SVMs fail if data not linearly separable.
b O O O sensitive to outliers.
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sensitive.pdf (ISL, Figure 9.$IExampIe where one outlier moves the hard-margin SVM
decision boundary alot.]

Idea: Allow some points to violate the margin, with slack variables
Modibed constraint for point

yiaw+1) ! 1" "
[Observe that the only Herence between these constraints and the hard-margin constraints we saw last

lecture is the extra slack terfq]
[We also impose new constraints, that the slack variables are never negative.]

1o

[This inequality ensures that all sample points tlahOviolate the margin are treated the same; they all
have"; = 0. Pointi has nonzerd; if and only if it violates the margin.]

slacket-.pdf| [A margin where some points have slack.]

Re-dePne OmarginO to W& [For soft-margin SVMs, the margin is no longer the distance from the
decision boundary to the nearest sample point; instead/ #O&]1
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To prevent abuse of slack, we add a loss tesrabjective fn.
Optimization problem: .
Findw, ! , and"; that minimizetw#? + c’ "
subjectto yi(Xjaw+!)! 1" " foralli$[1,n]

o foralli $[1,n]
...a quadratic program ieh+ n+ 1 dimensions andrconstraints.
[1tOs a quadratic program because its objective function is quadratic and its constraints are linear inequalities.]

C > Ois a scalar regularization hyperparametet trades b:

small C big C
desire maximize margin A#w# | keep most slack variables zero or small
danger | underbtting overbtting

(misclassibes much (awesome training, awful test)
training data)
outliers | less sensitive very sensitive
boundary| more ORatO more sinuous

[The last row only applies to nonlinear decision boundaries, which weQll discuss next. Obviously, a linear
decision boundary canOt be Osinuous.O]

Use validation to choosE.
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’ svmC.pdf (ISL, Figure QWIExamples of how the slab varies with SmallesC at upper

left; TargestC at lower right.]
[One way to think about slack is to pretend that slack is money we can spend to buy permission for a sample
point to violate the margin. The further a point penetrates the margin, the bigger the Pne you have to pay.
We want to make the margin as wide as possible, but we also want to spend as little money as possible. If
the regularization paramet€ris small, it means weOre willing to spend lots of money on violations so we
can get a wider margin. & is big, it means weOre cheap and we wonOt pay much for violations, even though
weOll sbier a narrower margin. I€ is inbnite, weOre back to a hard-margin SVM.]
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FEATURES

Q: How to do nonlinear decision boundaries?

A: Make nonlinear featurethat lift points into a higher-dimensional space.
High-d linear classibe®o low-d nonlinear classiber.

[Features work with all classiPersNnot only linear classiPers like perceptrons and SVMs, but also classibers
that are not linear.]

Example 1: The parabolic lifting map

n : Rd % Rd+1
! #
(X = #;(#2 & lifts x onto paraboloidkg+1 = #xt?

[WeOve added one new featute”. Even though the new feature is just a function of other input features,
it gives our linear classiber more power.]

Find a linear classiber ih-space.
It induces a sphere classibendspace.

X X C
y [Draw this by hand| circledec.pdi
Theorem:" (X1),...," (Xn) are linearly separablé iXy, ..., X, are separable by a hypersphere.

(Possibly ant -radius hypersphere hyperplane.)
Proof: Consider hypersphereRf w/centerc & radius#. Points inside:

HX" ot < #?
it " 20éx+#c#2<#2#

E%ell e < #0740

. WA
normal vector inRd*+1 $_%0&

" ()

Hence points inside spheye same side of hyperplane in-space.
[The implication works in both directions.]

[Hyperspheres include hyperplanes as a special, degenerate case. A hyperplane is essentially a hypersphere
with inPnite radius. So hypersphere decision boundaries can do everything hyperplane decision boundaries
can do, plus a lot more. With the parabolic lifting map, if you pick a hyperplarie-apace that is vertical,

you get a hyperplane ir-space.]
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Example 2: Axis-aligned ellipsoid/hyperboloid decision boundaries

[Draw examples of axis-aligned ellipse & hyperbola.]

In 3D, these have the formula
AX +BX+Cx+Dxi+Ex+Fxg+! =0
[Here, the capital letters are scalars, not matrices.]
" :RY9% RM

2

"= . % x .. xg)l

Hyperplaneis${\ B C‘%{p E Ha(+! =0
w

[WeOve turned input features into @ features for our linear classiber. If the points are separable by an
axis-aligned ellipsoid or hyperboloid, per the formula above, then the points lifteesizace are separable
by a hyperplane whose normal vector&ss[B C D E H(]

Example 3: Ellipsoid/hyperboloid

[Draw example of non-axis-aligned ellipse.]

3D formula: [for a general ellipsoid or hyperboloid]

AX + B+ Cx3 + Dxgxp + Exoxg + Fxaxp + Gxg + Hxo + Ixg+! =0
n (X) : Rd % R(d2+3d)/2

[Now, our decision function can be any degree-2 polynomial.]

Isosurface debned by this equation is called a quadtitthe special case of two dimensions, itOs also
known as a conic sectioiso our decision boundary can be an arbitrary conic section.]

[YouOll notice that there is a quadratic blowup in the number of features, becaugesévefynput features
creates a new feature n-space. If the dimension is large, these feature vectors are getting huge, and thatOs
going to impose a serious computational cost. But it might be worth it to Pnd good classibers for data that
arenOt linearly separable.]
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Example 4: Decision fn is degree-p polynomial

E.g., a cubic irR?:
"= X 8 X X X % X X

[Now weOre really blowing up the number of features! If you have, say, 100 features per sample point and
you want to use degree-4 decision functions, then each lifted feature vector has a length of roughly 4 million,
and your learning algorithm will take approximately forever to run.]

[However, later in the semester we will learn an extremely clever trick that allows us to work with these
huge feature vectors very quickly, without ever computing them. [tOs called OkernelizationO or Othe kernel
trick.0 So even though it appears now that working with degree-4 polynomials is computationally infeasible,

it can actually be done quickly.]

Linear Kernel Polynomial Kernel d=2 Polynomial Kernel d=5

100%

100%

a
0 e o
/ $/ ¢

degreeb.pdf[Hard-margin SVMs with degree/2/5 decision functions. Observe that the
margin tends to get wider as the degree increases.]

[Increasing the degree like this accomplishes two things.
D First, the data might become linearly separable when you lift them to a high enough degree, even if
the original data are not linearly separable.
b Second, raising the degree can widen the margin, so you might get a more robust decision boundary
that generalizes better to test data.

However, if you raise the degree too high, you will overbt the data and then generalization will get worse.]
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X X1
ho(z) = g(00 + 0121 + Ooxs)  g(0 + Orz1 + Opzo  9(60 + 0121 + B2
i M2 me
(g = sigmoid function) +0327 + 0423 +93"‘é"f—§ & 0"1"’,1;"'2
+05122) +0szixs + OsxiT2 + . ..
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[Training vs. test error for degreé2l5 decision functions. (ArtistOs conception;
these arenOt actual calculations, just hand-drawn guesses. Please send me email if you know
where to bnd bgures like this with actual data.) In this example, a degree-2 decision gives
the smallest test error.]

[You should search for the ideal degreeNnot too small, not too big. 1tOs a balancing act between underbitting
and overbtting. The degree is an example byperparametethat can be optimized by validation.]

[If youOre using both polynomial features and a soft-margin SVM, now you have two hyperparameters:
the degree and the regularization hyperparam@teGenerally, the optimaC will be di! erent for every
polynomial degree, so when you change the degree, you should run validation again to Pnd @héobest
that degree.]

[So far I1Ove talked only about polynomial features. But features can get much more complicated than
polynomials, and they can be tailored to bt a specibc problem. LetOs consider a type of feature you might
use if you wanted to implement, say, a handwriting recognition algorithm.]
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Example 5: Edge detection

Edge detectoralgorithm for approximating grayscaelor gradients in image, e.g.,
b tap blter
b Sobel blter
b oriented Gaussian derivative blter
[images are discrete, not continuous belds, so approximation of gradients is necessary.]

[See Olmage DerivativesO on Wikipedia.]

Collect line orientations in local histograms (each having 12 orientation bins per region); use histograms as
features ihsteadof raw pixels).

Histogram of Oriented Gradients

Input image

orientgrad.png[image histograms.]
Paper: Maji & Malik, 2009.

[If you want to, optionally, use these features in future homeworks and try to win the Kaggle competition,
this paper is a good online resource.]

[When they use a linear SVM on the raw pixels, Maji & Malik get an error rate of 15.38% on the test set.
When they use a linear SVM on the histogram features, the error rate goes down to 2.64%.]

[Many applications can be improved by designing application-specibc features. ThereOs no limit but your
own creativity and ability to discern the structure hidden in your application.]



