
18 Jonathan Richard Shewchuk

4 Soft-Margin Support Vector Machines; Features

SOFT-MARGIN SUPPORT VECTOR MACHINES (SVMs)

Solves 2 problems:
– Hard-margin SVMs fail if data not linearly separable.
– ” ” ” sensitive to outliers. 9.2 Support Vector Classifiers 345

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3
−1

0
1

2
3

X1X1

X
2

X
2

FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

• Greater robustness to individual observations, and

• Better classification of most of the training observations.

That is, it could be worthwhile to misclassify a few training observations
in order to do a better job in classifying the remaining observations.

The support vector classifier, sometimes called a soft margin classifier,
support
vector
classifier

soft margin
classifier

does exactly this. Rather than seeking the largest possible margin so that
every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations
to be on the incorrect side of the margin, or even the incorrect side of
the hyperplane. (The margin is soft because it can be violated by some
of the training observations.) An example is shown in the left-hand panel
of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.

An observation can be not only on the wrong side of the margin, but also
on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly

sensitive.pdf (ISL, Figure 9.5) [Example where one outlier moves the hard-margin SVM
decision boundary a lot.]

Idea: Allow some points to violate the margin, with slack variables.
Modified constraint for point i:

yi(Xi · w + ↵) � 1 � ⇠i
[Observe that the only di↵erence between these constraints and the hard-margin constraints we saw last
lecture is the extra slack term ⇠i.]
[We also impose new constraints, that the slack variables are never negative.]

⇠i � 0

[This inequality ensures that all sample points that don’t violate the margin are treated the same; they all
have ⇠i = 0. Point i has nonzero ⇠i if and only if it violates the margin.]

C

C

C

C

X

C

C

X

X

X

C

C

C

C
C

C

X

X

X

X

X

X

X

X

X

X

X

X

C

X

⇠4/kwk

⇠5/kwk

⇠3/kwk

1/kwk

1/kwk (margin)

⇠2/kwk

⇠1/kwk

w · x + ↵ = 0

slacker+.pdf [A margin where some points have slack.]

Re-define “margin” to be 1/kwk. [For soft-margin SVMs, the margin is no longer the distance from the
decision boundary to the nearest sample point; instead, it’s 1/kwk.]

Soft-Margin Support Vector Machines; Features 19

To prevent abuse of slack, we add a loss term to objective fn.

Optimization problem:
Find w, ↵, and ⇠i that minimize kwk2 +C

Pn
i=1 ⇠i

subject to yi(Xi · w + ↵) � 1 � ⇠i for all i 2 [1, n]
⇠i � 0 for all i 2 [1, n]

. . . a quadratic program in d + n + 1 dimensions and 2n constraints.
[It’s a quadratic program because its objective function is quadratic and its constraints are linear inequalities.]

C > 0 is a scalar regularization hyperparameter that trades o↵:
small C big C

desire maximize margin 1/kwk keep most slack variables zero or small
danger underfitting overfitting

(misclassifies much (awesome training, awful test)
training data)

outliers less sensitive very sensitive
boundary more “flat” more sinuous

[The last row only applies to nonlinear decision boundaries, which we’ll discuss next. Obviously, a linear
decision boundary can’t be “sinuous.”]

Use validation to choose C.
348 9. Support Vector Machines

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

X1X1

X1X1

X
2

X
2

X
2

X
2

FIGURE 9.7. A support vector classifier was fit using four di�erent values of the
tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

but potentially high bias. In contrast, if C is small, then there will be fewer
support vectors and hence the resulting classifier will have low bias but
high variance. The bottom right panel in Figure 9.7 illustrates this setting,
with only eight support vectors.

The fact that the support vector classifier’s decision rule is based only
on a potentially small subset of the training observations (the support vec-
tors) means that it is quite robust to the behavior of observations that
are far away from the hyperplane. This property is distinct from some of
the other classification methods that we have seen in preceding chapters,
such as linear discriminant analysis. Recall that the LDA classification rule

svmC.pdf (ISL, Figure 9.7) [Examples of how the slab varies with C. Smallest C at upper
left; largest C at lower right.]

[One way to think about slack is to pretend that slack is money we can spend to buy permission for a sample
point to violate the margin. The further a point penetrates the margin, the bigger the fine you have to pay.
We want to make the margin as wide as possible, but we also want to spend as little money as possible. If
the regularization parameter C is small, it means we’re willing to spend lots of money on violations so we
can get a wider margin. If C is big, it means we’re cheap and we won’t pay much for violations, even though
we’ll su↵er a narrower margin. If C is infinite, we’re back to a hard-margin SVM.]

20 Jonathan Richard Shewchuk

FEATURES

Q: How to do nonlinear decision boundaries?

A: Make nonlinear features that lift points into a higher-dimensional space.
High-d linear classifier! low-d nonlinear classifier.

[Features work with all classifiers—not only linear classifiers like perceptrons and SVMs, but also classifiers
that are not linear.]

Example 1: The parabolic lifting map

� : Rd ! Rd+1

�(x) =
"

x
kxk2

#
 lifts x onto paraboloid xd+1 = kxk2

[We’ve added one new feature, kxk2. Even though the new feature is just a function of other input features,
it gives our linear classifier more power.]

Find a linear classifier in �-space.
It induces a sphere classifier in x-space.

XX

X

X
X

X

X
X

X

X
X

C

C

C

C C

C

XX

X

X

XX

X

X

X

C

C
C

C
C

C

X

[Draw this by hand. circledec.pdf]

Theorem: �(X1), . . ., �(Xn) are linearly separable i↵ X1, . . ., Xn are separable by a hypersphere.
(Possibly an1-radius hypersphere = hyperplane.)

Proof: Consider hypersphere in Rd w/center c & radius ⇢. Points inside:

kx � ck2 < ⇢2

kxk2 � 2c · x + kck2 < ⇢2

[�2c> 1]| {z }
normal vector in Rd+1

"
x
kxk2

#

| {z }
�(x)

< ⇢2 � kck2

Hence points inside sphere$ same side of hyperplane in �-space.
[The implication works in both directions.]

[Hyperspheres include hyperplanes as a special, degenerate case. A hyperplane is essentially a hypersphere
with infinite radius. So hypersphere decision boundaries can do everything hyperplane decision boundaries
can do, plus a lot more. With the parabolic lifting map, if you pick a hyperplane in �-space that is vertical,
you get a hyperplane in x-space.]

Soft-Margin Support Vector Machines; Features 21

Example 2: Axis-aligned ellipsoid/hyperboloid decision boundaries

[Draw examples of axis-aligned ellipse & hyperbola.]

In 3D, these have the formula

Ax2
1 + Bx2

2 +Cx2
3 + Dx1 + Ex2 + Fx3 + ↵ = 0

[Here, the capital letters are scalars, not matrices.]

� : Rd ! R2d

�(x) = [x2
1 . . . x2

d x1 . . . xd]>

Hyperplane is [A B C D E F]| {z }
w>

·�(x) + ↵ = 0

[We’ve turned d input features into 2d features for our linear classifier. If the points are separable by an
axis-aligned ellipsoid or hyperboloid, per the formula above, then the points lifted to �-space are separable
by a hyperplane whose normal vector is [A B C D E F]>.]

Example 3: Ellipsoid/hyperboloid

[Draw example of non-axis-aligned ellipse.]

3D formula: [for a general ellipsoid or hyperboloid]

Ax2
1 + Bx2

2 +Cx2
3 + Dx1x2 + Ex2x3 + Fx3x1 +Gx1 + Hx2 + Ix3 + ↵ = 0

�(x) : Rd ! R(d2+3d)/2

[Now, our decision function can be any degree-2 polynomial.]

Isosurface defined by this equation is called a quadric. [In the special case of two dimensions, it’s also
known as a conic section. So our decision boundary can be an arbitrary conic section.]

[You’ll notice that there is a quadratic blowup in the number of features, because every pair of input features
creates a new feature in �-space. If the dimension is large, these feature vectors are getting huge, and that’s
going to impose a serious computational cost. But it might be worth it to find good classifiers for data that
aren’t linearly separable.]

22 Jonathan Richard Shewchuk

Example 4: Decision fn is degree-p polynomial

E.g., a cubic in R2:

�(x) = [x3
1 x2

1x2 x1x2
2 x3

2 x2
1 x1x2 x2

2 x1 x2]>

�(x) : Rd ! RO(dp)

[Now we’re really blowing up the number of features! If you have, say, 100 features per sample point and
you want to use degree-4 decision functions, then each lifted feature vector has a length of roughly 4 million,
and your learning algorithm will take approximately forever to run.]

[However, later in the semester we will learn an extremely clever trick that allows us to work with these
huge feature vectors very quickly, without ever computing them. It’s called “kernelization” or “the kernel
trick.” So even though it appears now that working with degree-4 polynomials is computationally infeasible,
it can actually be done quickly.]

Figure 6: The e�ect of the degree of a polynomial kernel. The polynomial kernel of degree
1 leads to a linear separation (A). Higher degree polynomial kernels allow a more flexible
decision boundary (B-C). The style follows that of Figure 5.

features. The dimensionality of the feature-space associated with the above
example is quadratic in the number of dimensions of the input space. If we
were to use monomials of degree d rather than degree 2 monomials as above,
the dimensionality would be exponential in d, resulting in a substantial
increase in memory usage and the time required to compute the discriminant
function. If our data are high-dimensional to begin with, such as in the case
of gene expression data, this is not acceptable. Kernel methods avoid this
complexity by avoiding the step of explicitly mapping the data to a high
dimensional feature-space.

We have seen above (Equation (5)) that the weight vector of a large
margin separating hyperplane can be expressed as a linear combination of
the training points, i.e. w =

�n
i=1 yi�ixi. The same holds true for a large

class of linear algorithms, as shown by the representer theorem (see [2]).
Our discriminant function then becomes

f(x) =
n�

i=1

yi�i ��(xi), �(x)� + b. (7)

The representation in terms of the variables �i is known as the dual repre-
sentation (cf. Section “Classification with Large Margin”). We observe that
the dual representation of the discriminant function depends on the data
only through dot products in feature-space. The same observation holds for
the dual optimization problem (Equation (4)) when replace xi with �(xi)
(analogously for xj).

If the kernel function k(x,x�) defined as

k(x,x�) =
�
�(x), �(x�)

�
(8)

10

degree5.pdf [Hard-margin SVMs with degree 1/2/5 decision functions. Observe that the
margin tends to get wider as the degree increases.]

[Increasing the degree like this accomplishes two things.
– First, the data might become linearly separable when you lift them to a high enough degree, even if

the original data are not linearly separable.
– Second, raising the degree can widen the margin, so you might get a more robust decision boundary

that generalizes better to test data.

However, if you raise the degree too high, you will overfit the data and then generalization will get worse.]

Soft-Margin Support Vector Machines; Features 23

Features

SVMs with polynomial features of various degrees:

degree = 1 degree = 2 degree = 5

21 / 48

Features

The features we choose are very important!

We want them to be rich enough to accurately represent a good
classifier.

This suggests we should make our set of features as rich as possible:
linear is a special case of quadratic is a special case of cubic... Why
not include them all?

The richer the set of features, the more likely we will encounter
overfitting.

It’s a balancing act: we want our features to be as complex as
necessary to represent the classifier, but no more complex.

22 / 48

Features and overfitting

What happens to this picture as sample size grows?

23 / 48

overfit.pdf [Training vs. test error for degree 1/2/5 decision functions. (Artist’s conception;
these aren’t actual calculations, just hand-drawn guesses. Please send me email if you know
where to find figures like this with actual data.) In this example, a degree-2 decision gives
the smallest test error.]

[You should search for the ideal degree—not too small, not too big. It’s a balancing act between underfitting
and overfitting. The degree is an example of a hyperparameter that can be optimized by validation.]

[If you’re using both polynomial features and a soft-margin SVM, now you have two hyperparameters:
the degree and the regularization hyperparameter C. Generally, the optimal C will be di↵erent for every
polynomial degree, so when you change the degree, you should run validation again to find the best C for
that degree.]

[So far I’ve talked only about polynomial features. But features can get much more complicated than
polynomials, and they can be tailored to fit a specific problem. Let’s consider a type of feature you might
use if you wanted to implement, say, a handwriting recognition algorithm.]

24 Jonathan Richard Shewchuk

Example 5: Edge detection

Edge detector: algorithm for approximating grayscale/color gradients in image, e.g.,
– tap filter
– Sobel filter
– oriented Gaussian derivative filter

[images are discrete, not continuous fields, so approximation of gradients is necessary.]

[See “Image Derivatives” on Wikipedia.]

Collect line orientations in local histograms (each having 12 orientation bins per region); use histograms as
features (instead of raw pixels).

orientgrad.png [Image histograms.]

Paper: Maji & Malik, 2009.

[If you want to, optionally, use these features in future homeworks and try to win the Kaggle competition,
this paper is a good online resource.]

[When they use a linear SVM on the raw pixels, Maji & Malik get an error rate of 15.38% on the test set.
When they use a linear SVM on the histogram features, the error rate goes down to 2.64%.]

[Many applications can be improved by designing application-specific features. There’s no limit but your
own creativity and ability to discern the structure hidden in your application.]

