CS 189 Introduction to Machine Learning
Spring 2023 Jonathan Shewchuk HW7

Due: Friday, May 5 at 11:59 pm

Deliverables:

1. Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope as-
signment entitled “Homework 7 Write-Up”. In addition, please include, as your solutions to each
coding problem, the specific subset of code relevant to that part of the problem. You may typeset your
homework in LaTeX or Word (submit PDF format, not .doc/.docx format) or submit neatly handwrit-
ten and scanned solutions. Please start each question on a new page. If there are graphs, include
those graphs in the correct sections. Do not put them in an appendix. We need each solution to be
self-contained on pages of its own.

e In your write-up, please state with whom you worked on the homework.

o In your write-up, please copy the following statement and sign your signature next to it. (Mac
Preview and FoxIt PDF Reader, among others, have tools to let you sign a PDF file.) We want
to make it extra clear so that no one inadvertently cheats.

“I certify that all solutions are entirely in my own words and that I have not looked at another
student’s solutions. I have given credit to all external sources I consulted.”

2. Submit all the code needed to reproduce your results to the Gradescope assignment entitled “Home-
work 7 Code”. Yes, you must submit your code twice: once in your PDF write-up following the
directions as described above so the readers can easily read it, and once in compilable/interpretable
form so the readers can easily run it. Do NOT include any data files we provided. Please include a
short file named README listing your name, student ID, and instructions on how to reproduce your
results. Please take care that your code doesn’t take up inordinate amounts of time or memory to run.
If your code cannot be executed, your solution cannot be verified.

s

HW7, ©UCB CS 189, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission.



1 HOIlOI' Code

Declare and sign the following statement:

“I certify that all solutions in this document are entirely my own and that I have not looked at anyone else’s
solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your) creation. Fur-
thermore, all external material (i.e., anything outside lectures and assigned readings, including figures and
pictures) should be cited properly. We wish to remind you that consequences of academic misconduct are
particularly severe!

2 The Training Error of AdaBoost

Recall that in AdaBoost, our input is an n X d design matrix X with n labels y; = +1, and at the end of
iteration T the importance of each sample is reweighted as

(T)
Z,V#GT(XO w;

n (T)
i=1 Wi

1
w™ = exp(—Br yi Gr(Xp)), where fr == In

1 —errp
2

and erry =
errr

Note that erry is the weighted error rate of the classifier Gy. Recall that G7(z) is =1 for all points z, but the
metalearner has a non-binary decision function M(z) = Z,T:1 B:G(z). To classify a test point z, we calculate
M(z) and return its sign.

In this problem we will prove that if every learner G, achieves 51% accuracy (that is, only slightly above
random), AdaBoost will converge to zero training error. (If you get stuck on one part, move on; all five parts
below can be done without solving the other parts, and parts (c) and (e) are the easiest.)

(a) We want to change the update rule to “normalize” the weights so that each iteration’s weights sum to 1;
(T*+1) = 1. That way, we can treat the weights as a discrete probability distribution over

that is, 37, w;
the sample points. Hence we rewrite the update rule in the form

(T+1) WgT) exp(—Br yi Gr(X)))
Wi 7 Zr (1

for some scalar Z7. Show that if }}7 wET) =1land Y7, WETH)

=1, then
Zr = 2+Jerrp(1 —erry). 2)

Hint: sum over both sides of (T)), then split the right summation into misclassified points and correctly
classified points.

(b) The initial weights are w(ll) = w(Zl) == w,(f) = }l Show that

1
WD = e YiMXi) (3)
i T
nll. %

(c) Let B (for “bad”) be the number of sample points out of n that the metalearner classifies incorrectly.
Show that

n

DM > . (4)
i=1
Hint: split the summation into misclassified points and correctly classified points.

HW7, ©UCB CS 189, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2



(d) Use the formulas (2), (3), and () to show that if err, < 0.49 for every learner G;, then B — 0 as T — 0.
Hint: (2) implies that every Z, < 0.9998. How can you combine this fact with (3 and (@)?

(e) Explain briefly why AdaBoost with short decision trees is a form of subset selection when the number
of features is large.

3 Movie Recommender System

In this problem, we will build a personalized movie recommender system! Suppose that there are m = 100
movies and n = 24,983 users in total, and each user has watched and rated a subset of the m movies. Our
goal is to recommend more movies for each user given their preferences.

Our historical ratings dataset is given by a matrix R € R™", where R;; represents the rating that user i gave
movie j. The rating is a real number in the range [—10, 10]: a higher value indicates that the user was more
satisfied with that movie. If user 7 did not rate movie j, R;; = NaN.

The provided movie_data/ directory contains the following files:

e movie_trainmat contains the training data, i.e. the matrix R of historical ratings specified above.

e movie_validate.txt contains user-movie pairs that don’t appear in the training set (i.e. R;; = NaN).
Each line takes the form “i, j, s”, where i is the user index, j is the movie index, and s indicates the
user’s rating of the movie. Contrary to the training set, the rating here is binary: if the user liked the
movie (positive rating), s = 1, and if the user did not like the movie (negative rating), s = —1.

We also provide movie_recommender.py, containing starter code for building your recommender system.

The singular value decomposition (SVD) is a powerful tool to decompose and analyze matrices. In lecture,
we saw that the SVD can be used to efficiently compute the principal coordinates of a data matrix for PCA.
Here, we will see that SVD can also produce dense, compact featurizations of the variables in the input ma-
trix (in our case, the m movies and n users). This application of SVD is known as Latent Semantic Analysis
(Wikipedia), and we can use it to construct a Latent Factor Model (LFM) for personalized recommendation.

Specifically, we want to learn a feature vector x; € R? for user i and a feature vector y i € RY for movie j
such that the inner product x; - y; approximates the rating R;; that user i would give movie j.

(a) Recall the SVD definition for a matrix R € R™ from [Lecture 21: R = UDV". Write an expression for
R;;j, user i’s rating for movie j, in terms of only the contents of U, D, and V.

(b) Based on your answer above, what should we choose as our user and movie feature vector representa-
tions x; and y; to achieve 100% training accuracy (correctly predict all known ratings in R)?

(c) Inthe provided movie_recommender.py, complete the code for part (c]) by filling in the missing parts of
the function svd_1fm. Start by replacing all missing (NaN) values in R with 0. Then, compute the SVD
of the resulting matrix, and follow your above derivations to compute the feature vector representations
for each user and movie. Note: do not center the data matrix; this is not PCA.

Once you are finished with the code, the rows of the user_vecs array should contain the feature vectors
for users (so the ith row of user_vecs is x;), and the rows of movie_vecs should contain the feature
vectors for movies (so the jth row of movie_vecsisy;).

Hint: we recommend using scipy.linalg.svd to compute the SVD, with full matrices = False.
This returns U (n X m), D (as a vector of m singular values in descending order, not a diagonal matrix),
and VT (m x m) in that order.

HW7, ©UCB CS 189, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3


https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://people.eecs.berkeley.edu/~jrs/189/lec/21.pdf

(d)

(e

()

To measure the training performance of the model, we can use the mean squared error (MSE) loss,

MSE = Z (xi - yj— Rij)2 where S :={(i, j) : R;; # NaN}.
(i.)eS

Complete the code to implement the training MSE computation within the function get_train mse.

Our model as constructed may achieve 100% training accuracy, but it is prone to overfitting. Instead,
we would like to use lower-dimensional representations for x; and y; to approximate our known ratings
closely while still generalizing well to unknown user/movie combinations. Specifically, we want each
x; and y; to be d-dimensional for some d < m, such that only the top d features are used to make
predictions x; - y;. The “top d features” are those corresponding to the d largest singular values: use this
as a hint for how to prune your current user/movie vector representations to d dimensions.

In your code, compute pruned user/movie vector representations with d = 2,5,10,20. Then, for
each setting, compute the training MSE (using the function you implemented in part (d)), the train-
ing accuracy (using the provided get_train_acc), and the validation accuracy (using the provided
get_val_acc). Plot the training MSE as a function of d on one plot, and the training and validation
accuracies as a function of d together on a separate plot. The code for this part is already included in the
starter code, so if your training MSE function from part (d) is implemented correctly, the required plots
should be saved to your project directory.

Comment on which value of d leads to optimal performance.

Hint: as a sanity check, if implemented correctly, your best validation accuracy should be about 71%.

For sparse data, replacing all missing values with zero, as we did in part (c)), is not a very satisfying
solution. A missing value in the training matrix R means that the user has not watched the movie; this
does not imply that the rating should be zero. Instead, we can learn our user/movie vector representations
by minimizing the MSE loss, which only incorporates the loss on rated movies (R;; # NaN).

Let’s define a loss function

L(th ) = D Gaeyy = Ri)* + > I3 + ) Iyl
i=1 j=1

(@, ))eS

where S has the same definition as in the MSE. This is similar to the original MSE loss, except with two
additional regularization terms to prevent the norms of the user/movie vectors from getting too large.

Implement an algorithm to learn vector representations of dimension d, the optimal value you found in
part @, for users and movies by minimizing L({x;}, {y;}).

We suggest employing an alternating minimization scheme. First, randomly initialize x; and y; for all
i, j. Then, minimize the above loss function with respect to the x; by treating the y; as constant vectors,
and subsequently minimize the loss with respect to the y; by treating the x; as constant vectors. Repeat
these two steps for a number of iterations. Note that when one of the x; or y; are constant, minimizing
the loss function with respect to the other component has a closed-form solution. Derive this solution
first in your report, showing all your work.

The starter code provides a template for this algorithm. Start by inputting your best d value from part (e])
to initialize the user and movie vectors, and then implement the functions to update the user and movie
vectors (holding the other constant) to their loss-minimizing values.

HW7, ©UCB CS 189, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4



e To improve efficiency, we recommend using the user_rated_idxs and movie_rated_idxs ar-
rays provided, which contain the indices of movies that each user rated and the indices of users that
rated each movie (respectively), to iterate through the non-NaN values of R in the update functions.

e Run these 2 update steps for 20 iterations. Include your final training MSE, training accuracy, and
validation accuracy on your report, and compare these results with your best results from part (e)).

4 Nearest Neighbors for Regression, from A to Z

For this problem, we will use data from the UN to have some fun with the nearest neighbors classifier. You’ll
be modifying starter code in the provided world values directory.

We are using the “World Values Survey” dataset, collected over several years from many countries. The
survey asked, “Which of these are most important for you and your family?” There were 16 possible
responses, including needs like “Freedom from Discrimination and Persecution” and “Better Transport and
Roads.” The data reported is the fraction of responses in each country that chose each option.

We would like to use these 16 features of each country (citizens’ responses to the survey) to predict that
country’s HDI (Human Development Index), a value between 0 and 1. In reality, the HDI is a complex
measure that accounts for factors like a country’s life expectancy, education, and per capita income. Intu-
itively, though, you would expect citizens of countries with different HDI to have different priorities. For
that reason, it may be reasonable to predict the HDI from survey data. (Note: throughout the problem we
use RMSE, which stands for Root Mean Squared Error.)

(a) Let’s visualize the data. Using sklearn, apply PCA to the data in the plot_pca method of world_values _utils.py.
Plot the data in its first two PCA dimensions, colored by HDI.

(b) In lecture, we covered k-nearest neighbors algorithms for classification problems. We decided that the
class of a test point would be the plurality of the classes of the k nearest training points. That algorithm
makes sense when the outputs are discrete, so we can vote. Here, the outputs are continuous. How
would you adapt the k-nearest neighbors classifier for a regression problem? (This is an open-ended
question with several possible answers.)

(c) Modify the starter code in world_values_starter.py to find the 7 nearest neighbors of the USA. Which
countries are the USA’s 7 nearest neighbors (in order) from the data given?

(d) The main hyperparameter of k-nearest neighbors is k itself. Use grid search in world_values_starter.py
to create a plot of the RMSE of k-NN regression versus k, where k is the number of neighbors. Include
your plot in your write-up. What is the best value of £? What is the RMSE?

(e) Explain your plot in (d) in terms of bias and variance. Think about the spirit of bias and variance more
than their precise definitions.

(f) We do not need to weight every neighbor equally: closer neighbors may be more relevant. For this prob-
lem, weight each neighbor by the inverse of its distance to the test point by modifying world_values_parameters.py.
Plot the RMSE of k-NN regression with distance weighting vs. k, where k is the number of features.
What is the best value of k? What is the RMSE? What happens as k gets very large, compared to
part (d)?

(g) One of the drawbacks of the k-nearest neighbors classifier is that it is very sensitive to the scale of the
features. For example, if one feature takes on values O or 0.1 and another takes on values O or 10, then
neighbors will almost certainly agree in the second feature.

HW7, ©UCB CS 189, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5



Add normalization to your k-nearest neighbors pipeline (continue to use distance weighting). Plot
RMSE versus k. What is the best value of k? What is the RMSE?

HW7, ©UCB CS 189, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6



	Honor Code 
	The Training Error of AdaBoost 
	Movie Recommender System 
	Nearest Neighbors for Regression, from A to Z 

