Co 189 / 289A Tntroduction to Machine Learning
Spring 2022 Jonathan Shewchuk Midterm

e Please do not open the exam before you are instructed to do so. Fill out the blanks below now.

¢ Electronic devices are forbidden on your person, including phones, laptops, tablet computers, headphones, and calcu-
lators. Turn your cell phone off and leave all electronics at the front of the room, or risk getting a zero on the exam.
Exceptions are made for car keys and devices needed because of disabilities.

e When you start, the first thing you should do is check that you have all 7 pages and all 4 questions. The second
thing is to please write your initials at the top right of every page after this one (e.g., write “JS” if you are Jonathan
Shewchuk).

e The exam is closed book, closed notes except your one cheat sheet.

¢ You have 80 minutes. (If you are in the Disabled Students’ Program and have an allowance of 150% or 200% time, that
comes to 120 minutes or 160 minutes, respectively.)

e Mark your answers on the exam itself in the space provided. Do not attach any extra sheets. If you run out of space for
an answer, write a note that your answer is continued on the back of the page.

e The total number of points is 100. There are 12 multiple choice questions worth 4 points each, and 3 written questions
worth a total of 52 points.

e For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right




Q1. [48 pts] Multiple Answer

Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [4 pts] Select the true statements about Bayes decision theory.

O A: The risk for a decision rule is the average loss
over the training points that are in class C.

(O B: The Bayes decision boundary between two
classes, if you’re using the 0-1 loss, is the set of points
xwhere PIX =x|Y =0) = P(X =x|Y =1).

O A: The problem of minimizing || Xw —y||, often
yields a “sparse” solution, where some of the compo-
nents of w are exactly zero.

O B: There is always at least one solution to the nor-
mal equations.

(c) [4 pts] Select the true statements about ROC curves.

(O A: The horizontal axis represents posterior prob-
ability thresholds and the vertical axis represents test
set accuracy.

O B: The ROC curve is a better guide for choosing
a threshold (separating negative from positive classi-
fications) on real-world data than the threshold sug-
gested by decision theory.

(d) [4 pts] Ridge regression is

O A:away to perform feature selection, as ridge re-
gression encourages weights to be exactly zero.

(O B: a method in which bias tends to increase, and
variance tends to decrase, as we increase the regular-
ization parameter A.

(O A: X can be factored as X = UDUT, where U is a
orthogonal matrix and D is a diagonal matrix.

O B: X can be factored as X = UUT, where U is a
orthogonal matrix.

O C: If the Bayes risk is nonzero in a two-class
classification problem, then the distributions for each
class (i.e., P(X|Y = C) and P(X|Y # C)) must overlap.

O D: There exists a loss function for which the Bayes
decision rule might select the class with lower poste-
rior probability.

(b) [4 pts] Select the true statements about least-squares linear regression.

(O C: There are problems for which the normal equa-
tions have exactly two distinct solutions.

O D: When the normal equations have multiple so-
lutions, all the solutions have the same loss on test
points.

(O C: AROC curve closer to the diagonal line y = x
implies that your classifier’s risk is closer to Bayes
optimal.

O D: There are (at least) two points on a ROC curve
that are not affected by changes in the model. (Note:
we are not counting the specific choice of threshold
between positive and negative as part of the model).

O C: motivated by imposing a Gaussian prior proba-
bility on the weight vector.

O D: amethod whose cost function has a unique min-
imum (assuming A > 0).

(e) [4 pts] Select the statements that are true for every real symmetric matrix X € R™",

O C: Apax(X) = 0, where A (X) denotes the great-
est eigenvalue of X.

O D:a"Xa < Apax(X) ||a||% for all a € R”.



(f) [4 pts] Below are 1,000 sample points drawn from a two-dimensional multivariate normal distribution. Which of the
following matrices could (without extreme improbability) be the covariance matrix of the distribution? (Pay attention to
the numbers on the axes!)
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(g) [4 pts] You are training a soft-margin SVM on a binary classification problem. You find that your model’s training
accuracy is very high, while your validation accuracy is very low. Which of the following are likely to improve your
model’s performance on the validation data?

O A: Training your model on more data. O C: Increasing the hyperparameter C.

O B: Adding a quadratic feature to each sample
point. O D: Decreasing the hyperparameter C.

(h) [4 pts] Select the true statements about Gaussian Discriminant Analysis.

O A: If a class-conditional covariance matrix is O C: QDA is more prone to overfitting than LDA.

anisotropic (the eigenvalues are not equal), the deci-

sion boundary is guaranteed to be nonlinear. O D: The Bayes decision boundary arising from two
normally distributed classes can split the feature space

O B: The QDA posterior probability is a logistic into at most two regions.

function composed with (applied to) a quadratic func-
tion of the feature space.

(i) [4 pts] Select the true statements about finding a minimum of a cost function f(x).

(O A: Newton’s method always converges to a glob- O C:If f is convex, is differentiable, and has exactly
ally minimum solution for any twice-differentiable one local minimum, then (batch) gradient descent al-
function f. ways converges to that minimum for any choice of

learning rate.
O B: For the cost function f(x) = d||x — bl + y with
0 > 0, Newton’s method always converges to a glob- O D: Itis not possible to execute an iteration of New-
ally minimum solution. ton’s method on the perceptron risk function.



(J) [4 pts] In the following statements, the word “bias” is referring to the bias-variance decomposition. Select the true ones.
O A: A model trained with n training points is likely O C: Increasing the number of parameters (weights)
to have lower variance than a model trained with 2n in a model usually improves the test set accuracy.

training points.

O B: If my model is underfitting, it is more likely to O D: Adding ¢,-regularization usually reduces vari-
have high bias than high variance. ance in linear regression.

(k) [4 pts] Which of the following statements are true regarding Lasso regression?

(O A: Lasso’s optimization problem can be stated as (O C: Lasso often produces sparser results (more zero
a quadratic program. weights) than ridge regression.

O B: The cost function minimized by Lasso has O D: A version of Lasso using a penalty term of
points where its gradient is not well-defined, and the Alwll¢, s (that is, the €y s-norm) will be more inclined
solution (minimum) is often at such a point. to produce sparse solutions than Lasso.

() [4 pts] Let X be an n X d design matrix where n = 10 and d = 12, representing information about various loan borrowers.
Let y € R" be a vector of labels such that y; represents the time (in days) between when borrower i took a loan and when
it was fully repaid. We would like to train a regression model on this data. Which of the following methods would be
reasonable choices for this task?

O A: Least squares linear regression with the solu- O C: Least squares linear regression using the
tion w* = (XTX)"'XTy Moore—Penrose pseudoinverse, w* = X'y
O B: Logistic regression O D: Ridge regression



Q2. [17 pts] Gaussian Discriminant Analysis

You want to create a model to predict student performance on the CS 189/289A Midterm. You survey several past students and
record how many hours they studied for the exam, and whether or not they passed, yielding the two classes.

Passed: [4, 5,5.5,6.5,7, 8]
Failed: [0, 1, 2, 3, 4]

The hours spent studying is the only feature we have for each student (d = 1). Assume that the number of hours is normally
distributed for both the passing and failing students. Consider two ways of modeling this data: Linear Discriminant Analysis
(LDA) and Quadratic Discriminant Analysis (QDA). Use the 0-1 loss function to define risk.

(a) [8 pts] Calculate the sample means y,, 1, and the variances 0'3,, 0'} computed for QDA. (The subscripts mean “pass” and

“fail.”) Express your answers as the simplest fractions (not decimals) possible.

(b) [4 pts] Calculate the sample means and variances used by LDA. Express your answers as the simplest fractions (not
decimals) possible.

(¢) [5 pts] Calculate the decision boundary for LDA. Use fractions, not decimals, and express the answer in as simple a form
as possible (but expect it to have a logarithm in it).



Q3. [15 pts] Symmetric Matrices

(a) [6 pts] Derive the 2 x 2 symmetric matrix whose eigenvalues are 5 and 2, such that (2,—1) is an eigenvector with
eigenvalue 5.

(b) [6 pts] Consider the two-dimensional bivariate normal distribution N(0, X) where the covariance matrix X is the matrix
you derived in part (a) and the mean is 4 = 0. Let f(x) be the PDF of that normal distribution, where x € R?. What are
the lengths of the major and minor axes of the ellipse

?

1
fx) = P

Justify your answer.

(¢) [3 pts] Consider a cost function J(w) over a weight vector w, and suppose that at every point w € R<, the Hessian matrix
V2] is positive definite. Is it always true that J(w) has exactly one unique local minimum w* € R¢? Why or why not?



Q4. [20 pts] Linear Regression with Laplacian Noise

In lecture, we saw how least-squares regression is motivated by maximum likelihood estimation if we think our data obeys
a linear relationship but has added noise that is normally distributed. But what if the noise is better modeled by the Laplace
distribution (which you reviewed in Homework 4)?

Let € ~ Laplace(u, 8) indicate a random variable € drawn from a univariate Laplace distribution with mean y and scale param-
eter 8. The PDF of this distribution is

fleu,pB) = ieXp(y)'

Following our customary notation, the input is an n X d design matrix X and a vector y such that y; is the label for sample
point X;, where X/ is the ith row of X. To keep things simple, we will do linear regression through the origin (no bias term @),
so the regression function is i(x) = w-x. Our model is that each label y; comes from a linear relationship perturbed by Laplacian
noise,

yi ~ Laplace(w - X;, 3),

where w € R? is the true linear relationship. We will use maximum likelihood estimation to try to estimate w.

(a) [5 pts] Write the likelihood function L(w; X, y) for the parameter w, given the fixed data X and y.

(b) [3 pts] Write the log likelihood function £(w; X, y) for the parameter w, given the fixed data X and y, in as simple a form
as you can. (Make sure your logarithms have the correct base.)

(¢) [3 pts] What is the simplest cost function we can minimize that gives us the same value of w as maximizing the likelihood?

(d) [4 pts] How is the cost function you just derived different from standard least-squares regression? Is it more or less
sensitive to outliers? Why?

(e) [5 pts] Write the batch gradient descent rule for minimizing your cost function, using 7 for the step size (aka learning
rate). You may omit training points whose losses have undefined gradients. Hint: Recall that C%Ia/l is 1 for @ > 0, —1 for
«a < 0, and undefined for @ = 0.



