CS 189/289A Introduction to Machine Learning Spring 2021 Jonathan Shewchuk

Midterm

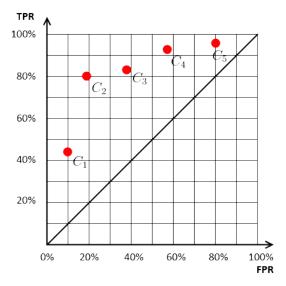
- The exam is open book, open notes for material on **paper**. On your computer screen, you may have only this exam, Zoom (if you are running it on your computer instead of a mobile device), and four browser windows/tabs: Gradescope, the exam instructions, clarifications on Piazza, and the form for submitting clarification requests.
- You will submit your answers to the multiple-choice questions directly into Gradescope via the assignment "Midterm Multiple Choice"; please do not submit your multiple-choice answers on paper. If you are in the DSP program and have been granted extra time, select the "DSP, 150%" or "DSP, 200%" option. By contrast, you will submit your answers to the written questions by writing them on paper by hand, scanning them, and submitting them through Gradescope via the assignment "Midterm Free Response."
- Please write your name at the top of each page of your written answers. (You may do this before the exam.) Please start each top-level question (Q2, Q3, etc.) on a new sheet of paper. Clearly label all written questions and all subparts of each written question.
- You have **80 minutes to complete the midterm exam** (**7:40–9:00 PM**). (If you are in the DSP program and have an allowance of 150% or 200% time, that comes to 120 minutes or 160 minutes, respectively.)
- When the exam ends (9:00 PM), **stop writing**. You must submit your multiple-choice answers before 9:00 PM sharp. **Late multiple-choice submissions will be penalized at a rate of 5 points per minute after 9:00 PM.** (The multiple-choice questions are worth 40 points total.)
- From 9:00 PM, you have 15 minutes to scan the written portion of your exam and turn it into Gradescope via the assignment "Midterm Free Response." Most of you will use your cellphone/pad and a third-party scanning app. If you have a physical scanner, you may use that. Late written submissions will be penalized at a rate of 10 points per minute after 9:15 PM. (The written portion is worth 60 points total.)
- Following the exam, you must use Gradescope's **page selection mechanism** to mark which questions are on which pages of your exam (as you do for the homeworks). Please get this done before 2:00 AM. This can be done on a computer different than the device you submitted with.
- The total number of points is 100. There are 10 multiple choice questions worth 4 points each, and four written questions worth a total of 60 points.
- For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct answers must be checked.

Q1. [40 pts] Multiple Answer

Fill in the bubbles for **ALL correct choices**: there may be more than one correct choice, but there is always at least one correct choice. **NO partial credit**: the set of all correct answers must be checked.

(a)	[4 pts] Which of the following cost functions are smooth—i.e.	, having continuous gradients everywhere?		
	○ A: the perceptron risk function	\bigcirc C: least squares with ℓ_2 regularization		
	O B: the sum (over sample points) of logistic losses	\bigcirc D: least squares with ℓ_1 regularization		
(b)	[4 pts] Which of the following changes would commonly cause an SVM's margin 1/ w to shrink?			
	\bigcirc A: Soft margin SVM: increasing the value of C	\bigcirc C: Soft margin SVM: decreasing the value of C		
	O B: Hard margin SVM: adding a sample point that violates the margin	O D: Hard margin SVM: adding a new feature to each sample point		
(c)	[4 pts] Recall the logistic function $s(\gamma)$ and its derivative $s'(\gamma) = \frac{d}{d\gamma}s(\gamma)$. Let γ^* be the value of γ that maximizes $s'(\gamma)$.			
	\bigcirc A: $\gamma^* = 0.25$	\bigcirc C: $s'(\gamma^*) = 0.5$		
	$\bigcirc B: s(\gamma^*) = 0.5$	\bigcirc D: $s'(\gamma^*) = 0.25$		
(d)	[4 pts] You are running logistic regression to classify two-dimensional sample points $X_i \in \mathbb{R}^2$ into two classes $y_i \in \{0, 1\}$ with the regression function $h(z) = s(w^{\top}z + \alpha)$, where s is the logistic function. Unfortunately, regular logistic regression isn't fitting the data very well. To remedy this, you try appending an extra feature, $ X_i ^2$, to the end of each sample point X_i . After you run logistic regression again with the new feature, the decision boundary in \mathbb{R}^2 could be			
	○ A: a line.	○ C: an ellipse.		
	○ B: a circle.	O: an S-shaped logistic curve.		
(e)	[4 pts] We are performing least-squares linear regression, with the use of a fictitious dimension (so the regression function isn't restricted to satisfy $h(0) = 0$). Which of the following will never increase the training error, as measured by the mean squared-error cost function?			
	A: Adding polynomial features	○ C: Using Lasso to encourage sparse weights		
	O B: Using backward stepwise selection to remove some features, thereby reducing validation error	O D: Centering the sample points		
(f)	[4 pts] Given a design matrix $X \in \mathbb{R}^{n \times d}$, labels $y \in \mathbb{R}^n$, ar $ Xw - y ^2 + \lambda w ^2$. Suppose that $w^* \neq 0$.	and $\lambda > 0$, we find the weight vector w^* that minimizes		
	\bigcirc A: The variance of the method decreases if λ increases enough.	\bigcirc C: The bias of the method increases if λ increases enough.		
	\bigcirc B: There may be multiple solutions for w^* .	\bigcirc D: $w^* = X^+y$, where X^+ is the pseudoinverse of X^+		

- (g) [4 pts] **The following two questions use the following assumptions.** You want to train a dog identifier with Gaussian discriminant analysis. Your classifier takes an image vector as its input and outputs 1 if it thinks it is a dog, and 0 otherwise. You use the CIFAR10 dataset, modified so all the classes that are not "dog" have the label 0. Your training set has 5,000 dog images and 45,000 non-dog ("other") images. Which of the following statements seem likely to be correct?
 - A: LDA has an advantage over QDA because the two classes have different numbers of training examples.
- C: LDA has an advantage over QDA because the two classes are expected to have very different covariance matrices.
- O B: QDA has an advantage over LDA because the two classes have different numbers of training examples.
- O: QDA has an advantage over LDA because the two classes are expected to have very different covariance matrices.
- (h) [4 pts] **This question is a continuation of the previous question.** You train your classifier with LDA and the 0-1 loss. You observe that at test time, your classifier always predicts "other" and never predicts "dog." What is a likely reason for this and how can we solve it? (Check all that apply.)
 - A: Reason: The prior for the "other" class is very large, so predicting "other" on every test point minimizes the (estimated) risk.
- C: Solve it by using a loss function that penalizes dogs misclassified as "other" more than "others" misclassified as dogs.
- \bigcirc B: Reason: As LDA fits the same covariance matrix to both classes, the class with more examples will be predicted for all points in \mathbb{R}^d .
- \bigcirc D: Solve it by learning an isotropic pooled covariance instead of an anisotropic one; that is, the covariance matrix computed by LDA has the form $\sigma^2 I$.
- (i) [4 pts] We do an ROC analysis of 5 binary classifiers C_1 , C_2 , C_3 , C_4 , C_5 trained on the training points X_{train} and labels y_{train} . We compute their true positive and false positive rates on the validation points X_{val} and labels y_{val} and plot them in the ROC space, illustrated below. In X_{val} and y_{val} , there are n_p points in class "positive" and n_n points in class "negative." We use a 0-1 loss.



ROC analysis of five classifiers. FPR = false positive rate; TPR = true positive rate.

- \bigcirc A: If $n_p = n_n$, C_2 is the classifier with the highest validation accuracy.
- \bigcirc C: There exists some n_p and n_n such that C_1 is the classifier with the highest validation accuracy.
- \bigcirc B: If $n_p = n_n$, all five classifiers have higher validation accuracy than any random classifier.
- \bigcirc D: There exists some n_p and n_n such that C_3 is the classifier with the highest validation accuracy.

 A: Ridge regression is more effective for feature subset selection than Lasso. 	 C: Stepwise subset selection uses the accuracy on the training data to decide which features to include.
○ B: If the best model uses only features 2 and 4 (i.e., the second and fourth columns of the design matrix), forward stepwise selection is guaranteed to find that model.	O: Backward stepwise selection could train a model with only features 1 and 3. It could train a model with only features 2 and 4. But it will never train both models.

(j) [4 pts] Tell us about feature subset selection.

Q2. [14 pts] Eigendecompositions

With this information, we decorrelate the centered design matrix by

- (a) [5 pts] Consider a symmetric, square, real matrix $A \in \mathbb{R}^{d \times d}$. Let $A = V \Lambda V^{\top}$ be its eigendecomposition. Let v_i denote the ith column of V. Let λ_i denote Λ_{ii} , the scalar component on the ith row and ith column of Λ .
 - Consider the matrix $M = \alpha A A^2$, where $\alpha \in \mathbb{R}$. What are the eigenvalues and eigenvectors of M? (Expressed in terms of parts of A's eigendecomposition and α . No proof required.)
- (b) [4 pts] Suppose that A is a sample covariance matrix for a set of n sample points stored in a design matrix $X \in \mathbb{R}^{n \times d}$, and that $\alpha \in \mathbb{R}$ is a fixed constant. Is it always true (for any such A and α) that there exists another design matrix $Z \in \mathbb{R}^{n \times d}$ such that $M = \alpha A A^2$ is the sample covariance matrix for Z? Explain your answer.

Q3. [10 pts] Maximum Likelihood Estimation

There are 5 balls in a bag. Each ball is either red or blue. Let θ (an integer) be the number of blue balls. We want to estimate θ , so we draw 4 balls **with replacement** out of the bag, replacing each one before drawing the next. We get "blue," "red," "blue," and "blue" (in that order).

- (a) [5 pts] Assuming θ is fixed, what is the likelihood of getting exactly that sequence of colors (expressed as a function of θ)?
- (b) [3 pts] Draw a table showing (as a fraction) the likelihood of getting exactly that sequence of colors, for every value of θ from zero to 5 inclusive.

θ	$\mathcal{L}(\theta; \langle \text{ blue, red, blue, blue } \rangle)$		
0	?		
1	?		
2	?		
3	?		
4	?		
5	?		

(c) [2 pts] What is the maximum likelihood estimate for θ ? (Chosen among all integers; not among all real numbers.)

Q4. [20 pts] Tikhonov Regularization

Let's take a look at a more complicated version of ridge regression called *Tikhonov regularization*. We use a regularization parameter similar to λ , but instead of a scalar, we use a real, square matrix $\Gamma \in \mathbb{R}^{d \times d}$ (called the *Tikhonov matrix*). Given a design matrix $X \in \mathbb{R}^{n \times d}$ and a vector of labels $y \in \mathbb{R}^n$, our regression algorithm finds the weight vector $w^* \in \mathbb{R}^d$ that minimizes the cost function

$$J(w) = ||Xw - y||_2^2 + ||\Gamma w||_2^2.$$

- (a) [7 pts] Derive the normal equations for this minimization problem—that is, a linear system of equations whose solution(s) is the optimal weight vector w^* . Show your work. (If you prefer, you can write an explicit closed formula for w^* .)
- (b) [3 pts] Give a simple, sufficient and necessary condition on Γ (involving *only* Γ ; not X nor y) that guarantees that J(w) has only one unique minimum w^* . (To be precise, the uniqueness guarantee must hold for *all* values of X and y, although the unique w^* will be different for different values of X and y.) (A sufficient but not necessary condition will receive part marks.)
- (c) [5 pts] Recall the Bayesian justification of ridge regression. We impose an isotropic normal prior distribution on the weight vector—that is, we assume that $w \sim \mathcal{N}(0, \sigma^2 I)$. (This encodes our suspicion that small weights are more likely to be correct than large ones.) Bayes' Theorem gives us a posterior distribution f(w|X, y). We apply maximum likelihood estimation (MLE) to estimate w in that posterior distribution, and it tells us to find w by minimizing $||Xw y||_2^2 + \lambda ||w||_2^2$ for some constant λ .

Suppose we change the prior distribution to an **anisotropic** normal distribution: $w \sim \mathcal{N}(0, \Sigma)$ for some symmetric, positive definite covariance matrix Σ . Then MLE on the new posterior tells us to do Tikhonov regularization! What value of Γ does MLE tells us to use when we minimize J(w)?

Give a one-sentence explanation of your answer.

(d) [5 pts] Suppose you solve a Tikhonov regularization problem in a two-dimensional feature space (d = 2) and obtain a weight vector w^* that minimizes J(w). The solution w^* lies on an isocontour of $||Xw - y||_2^2$ and on an isocontour of $||\Gamma w||_2^2$. Draw a diagram that plausibly depicts both of these two isocontours, in a case where Γ is **not** diagonal and $y \neq 0$. (You don't need to choose specific values of X, y, or Γ ; your diagram just needs to look plausible.)

Your diagram must contain the following elements:

- The two axes (coordinate system) of the space you are optimizing in, with both axes labeled.
- The specified isocontour of $||Xw y||^2$, labeled.
- The specified isocontour of $||\Gamma w||^2$, labeled.
- The point w^* .

These elements must be in a plausible geometric relationship to each other.

Q5. [16 pts] Multiclass Bayes Decision Theory

Let's apply Bayes decision theory to three-class classification. Consider a weather station that constantly receives data from its radar systems and must predict what the weather will be on the next day. Concretely:

- The input *X* is a scalar value representing the level of cloud cover, with only four discrete levels: 25, 50, 75, and 100 (the percentage of cloud cover).
- The station must predict one of three classes Y corresponding to the weather tomorrow. $Y = y_0$ means sunny, y_1 means cloudy, and y_2 means rain.
- The priors for each class are as follows: $P(Y = y_0) = 0.5$, $P(Y = y_1) = 0.3$, and $P(Y = y_2) = 0.2$.
- The station has measured the cloud cover on the days prior to 100 sunny days, 100 cloudy days, and 100 rainy days. From these numbers they estimated the class-conditional probability mass functions P(X|Y):

Prior-Day Cloud Cover (X)	Sunny, $P(X Y = y_0)$	Cloudy, $P(X Y = y_1)$	Rain, $P(X Y = y_2)$
25	0.7	0.3	0.1
50	0.2	0.3	0.1
75	0.1	0.3	0.3
100	0	0.1	0.5

• We use an asymmetric loss. Let z be the predicted class and y the true class (label).

$$L(z, y) = \begin{cases} 0 & z = y, \\ 1 & y = y_0 \text{ and } z \neq y_0, \\ 2 & y = y_1 \text{ and } z \neq y_1, \\ 4 & y = y_2 \text{ and } z \neq y_2. \end{cases}$$

- (a) [8 pts] Consider the constant decision rule $r_0(x) = y_0$, which *always* predicts y_0 (sunny). What is the risk $R(r_0)$ of the decision rule r_0 ? Your answer should be a number, but **show all your work**.
- (b) [8 pts] Derive the Bayes optimal decision rule $r^*(x)$ —the rule that minimizes the risk $R(r^*)$.

Hint: Write down a table calculating $L(z, y_i) P(X|Y = y_i) P(Y = y_i)$, for each class y_i and each possible value of X (12 entries total), in the cases where the prediction z is wrong. Then figure out how to use it to minimize R. This problem can be solved without wasting time computing P(X).