(5 189 Introduction to
Spring 2020 MtachinetLeartning Final Exam

e The exam is open book, open notes, and open web. However, you may not consult or communicate with other people
(besides your exam proctors).

e You will submit your answers to the multiple-choice questions through Gradescope via the assignment “Final Exam
— Multiple Choice”; please do not submit your multiple-choice answers on paper. By contrast, you will submit your
answers to the written questions by writing them on paper by hand, scanning them, and submitting them through Grade-
scope via the assignment “Final Exam — Writeup.”

e Please write your name at the top of each page of your written answers. (You may do this before the exam.)

e You have 180 minutes to complete the midterm exam (3:00-6:00 PM). (If you are in the DSP program and have an
allowance of 150% or 200% time, that comes to 270 minutes or 360 minutes, respectively.)

e When the exam ends (6:00 PM), stop writing. You must submit your multiple-choice answers before 6:00 PM sharp.
Late multiple-choice submissions will be penalized at a rate of 5 points per minute after 6:00 PM. (The multiple-choice
questions are worth 60 points total.)

e From 6:00 PM, you have 15 minutes to scan the written portion of your exam and turn it into Gradescope via the
assignment “Final Exam — Writeup.” Most of you will use your cellphone and a third-party scanning app. If you have a
physical scanner, you may use that. Late written submissions will be penalized at a rate of 5 points per minute after 6:15
PM.

e Mark your answers to multiple-choice questions directly into Gradescope. Write your answers to written questions on
blank paper. Clearly label all written questions and all subparts of each written question. Show your work in
written questions.

e Following the exam, you must use Gradescope’s page selection mechanism to mark which questions are on which pages
of your exam (as you do for the homeworks).

e The total number of points is 150. There are 16 multiple choice questions worth 4 points each, and six written questions
worth 86 points total.

e For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.
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Q1. [64 pts] Multiple Answer

Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(1) [4 pts] Which of the following are true for the k-nearest neighbor (k-NN) algorithm?

@ A: k-NN can be used for both classification and (O C: The decision boundary looks smoother with
regression. smaller values of k.
@ B: As k increases, the bias usually increases. O D: As k increases, the variance usually increases.

(2) [4 pts] Let X be a matrix with singular value decomposition X = UZVT. Which of the following are true for all X?

@ A:rank(X) = rank(®). @ C: The first column of V is an eigenvector of X7 X.
O B: If all the singular values are unique, then the @ D: The singular values and the eigenvalues of
SVD is unique. X7 X are the same.

A is correct because the number of non-zero singular values is equal to the rank. B is incorrect because you could change both
U — —U,V — =V. C is correct because the SVD and eigendecomposition of X" X is VZ?VT. D is correct as X' X is positive
semidefinite, so the eigenvalues can’t be negative.

(3) [4 pts] Lasso (with a fictitious dimension), random forests, and principal component analysis (PCA) all . ..
@ A: can be used for dimensionality reduction or feature subset selection
O B: compute linear transformations of the input features
O C: are supervised learning techniques

@ D: are translation invariant: changing the origin of the coordinate system (i.e., translating all the training and
test data together) does not change the predictions or the principal component directions

Option B is incorrect because random forests don’t compute linear transformations. Option C is incorrect because PCA is
unsupervised.

(4) [4 pts] Suppose your training set for two-class classification in one dimension (d = 1; x; € R) contains three sample
points: point x; = 3 with label y; = 1, point x, = 1 with label y, = 1, and point x3 = —1 with label y; = —1. What are
the values of w and b given by a hard-margin SVM?

OA:w=1,b=1 ®Cw=1,b=0

OBw=0,b=1 OD:iw=0co,b=0

(5) [4 pts] Use the same training set as part (d). What is the value of w and b given by logistic regression (with no regular-

ization)?
OAw=1b=1 OCw=1,b=0
OB:w=0,b=1 @®Dw=c,b=0

(6) [4 pts] Below are some choices you might make while training a neural network. Select all of the options that will
generally make it more difficult for your network to achieve high accuracy on the test data.



@ A: Initializing the weights to all zeros O C: Using momentum

@ B: Normalizing the training data but leaving the O D: Reshuflling the training data at the beginning
test data unchanged of each epoch

A) Initializing weights with zeros makes it impossible to learn. B) Mean and standard deviation should be computed on the
training set and then used to standardize the validation and test sets, so that the distributions are matched for each set. C) This
describes momentum and will generally help training. D) This is best practice.



(7) [4 pts] To the left of each graph below is a number. Select the choices for which the number is the multiplicity of the
eigenvalue zero in the Laplacian matrix of the graph.

O C:2

O D:4

The multiplicity is equal to the number of connected components in the graph.

(8) [4 pts] Given the spectral graph clustering optimization problem
Find y that minimizes y Ly
subjectto  y'y=n
and 17y=0,
which of the following optimization problems produce a vector y that leads to the same sweep cut as the optimization
problem above? M is a diagonal mass matrix with different masses on the diagonal.

Minimize y" Ly P e Minimize y"Ly/(y"y)
@® A:subjectto yTy=1 “subjectto 1Ty =0
and 17y=0
Minimize y" Ly Minimize y" Ly
O B:subjectto  Vi,y;=1lory, =-1 O D:subjectto y"™My=1
and 17y=0 and 1"My=0

(9) [4 pts] Which of the following methods will cluster the data in panel (a) of the figure below into the two clusters (red
circle and blue horizontal line) shown in panel (b)? Every dot in the circle and the line is a data point. In all the options
that involve hierarchical clustering, the algorithm is run until we obtain two clusters.

: . (a) Unclustered

©00000000000000000000000000000000000000000000000000000000000000000

(b) Desired clustering

O A: Hierarchical agglomerative clustering with @ B: Hierarchical agglomerative clustering with
Euclidean distance and complete linkage Euclidean distance and single linkage



(O C: Hierarchical agglomerative clustering with O D: k-means clustering with k = 2
Euclidean distance and centroid linkage

Single linkage uses the minimum distance between two clusters as a metric for merging clusters. Since the two clusters are
densely packed with points and the minimum distance between the two clusters is greater than the within-cluster distances
between points, single linkage doesn’t link the circle to the line until the very end.

The other three methods will all join some of the points at the left end of the line with the circle, before they are joined with the
right end of the line.



(10) [4 pts] Which of the following statement(s) about kernels are true?

@ A: The dimension of the lifted feature vectors ®(-), whose inner products the kernel function computes, can be
infinite.

O B: For any desired lifting ®(x), we can design a kernel function k(x, z) that will evaluate ®(x)" ®(z) more quickly
than explicitly computing ®(x) and O(z).

@ C: The kernel trick, when it is applicable, speeds up a learning algorithm if the number of sample points is
substantially less than the dimension of the (lifted) feature space.

@ D: If the raw feature vectors x, y are of dimension 2, then k(x,y) = x%y% + x%y% is a valid kernel.

A is correct; consider the Gaussian kernel from lecture. B is wrong; most liftings don’t lead to super-fast kernels. Just some
special ones do. C is correct, straight from lecture. Though in this case, the dual algorithm is faster than the primal whether
you use a fancy kernel or not. D is correct because k(x, y) is inner product of ®(x) = [x; x3]" and ®(y) = [y} y31".

(11) [4 pts] We want to use a decision tree to classify the training points depicted. Which of the following decision tree
classifiers is capable of giving 100% accuracy on the training data with four splits or fewer?
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O A: A standard decision tree with axis-aligned splits @ C: A decision tree with multivariate linear splits
O B: Using PCA to reduce the training data to one @ D: Appending a new feature |x|| + |x;| to each
dimension, then applying a standard decision tree sample point x, then applying a standard decision tree

A standard decision tree will need (substantially) more than four splits. PCA to 1D will make it even harder. However,
four non-axis-aligned multivariate linear splits suffice to cut the diamond out of the center. Finally, adding the L; norm
feature lets us perfectly classify the data with a single split that cuts off the top of the pyramid.

(12) [4 pts] Which of the following are true about principal components analysis (PCA)?

O A: The principal components are eigenvectors of @ C: The principal components are eigenvectors of
the centered data matrix. the sample covariance matrix.

@ B: The principal components are right singular @ D: The principal components are right singular
vectors of the centered data matrix. vectors of the sample covariance matrix.

The first three follow directly from definitions. The last is because the covariance matrix is symmetric, so the singular vectors
are the eigenvectors.



(13) [4 pts] Suppose we are doing ordinary least-squares linear regression with a fictitious dimension. Which of the
following changes can never make the cost function’s value on the training data smaller?

@ A: Discard the fictitious dimension (i.e., don’t append a 1 to every sample point).
O B: Append quadratic features to each sample point.

@ C: Project the sample points onto a lower-dimensional subspace with PCA (without changing the labels) and
perform regression on the projected points.

@ D: Center the design matrix (so each feature has mean zero).

A: Correct. Discarding the fictitious dimension forces the linear regression function to be zero at the origin, which may increase
the cost function but can never decrease it.

B: Incorrect. Added quadratic features often help to fit the data better.

C: Correct. Regular OLS is at least as expressive. Projecting the points may incrase the cost function but can never decrease
it. Centering features doesn’t matter so WLOG assume X has centered features. If the full SVD is X = UXV7, then projecting
onto a k-dimensional subspace gives X; = U V. If wy is a solution for the PCA-projected OLS, we can take w = Vz where 2
is the first k elements of VTw, with the rest zero, and get X;wy = Xw.

D: Correct. Since we’re using a fictitious dimension, translating the points does not affect the cost of the optimal regression
function (which translates with the points).



(14) [4 pts] Which of the following are true about principal components analysis (PCA)? Assume that no two eigenvectors
of the sample covariance matrix have the same eigenvalue.

@ A: Appending a 1 to the end of every sample point doesn’t change the results of performing PCA (except that
the useful principal component vectors have an extra O at the end, and there’s one extra useless component with
eigenvalue zero).

@ B: If you use PCA to project d-dimensional points down to j principal coordinates, and then you run PCA again
to project those j-dimensional coordinates down to & principal coordinates, with d > j > k, you always get the same
result as if you had just used PCA to project the d-dimensional points directly down to k principle coordinates.

O C: If you perform an arbitrary rigid rotation of the sample points as a group in feature space before performing
PCA, the principal component directions do not change.

@ D: If you perform an arbitrary rigid rotation of the sample points as a group in feature space before performing
PCA, the largest eigenvalue of the sample covariance matrix does not change.

Appending an extra dimension with the same values introduces no variance in the extra dimension, so PCA will ignore that
dimension. PCA discards the eigenvector directions associated with the largest eigenvalues; as the eigenvectors are mutually
orthogonal, this does not affect the variance in the surviving dimensions, so your results depend solely on how many directions
you discard. Rotating the sample points rotates the principal components, but it doesn’t change the variance along each of those
(rotated) component directions.

(15) [4 pts] Consider running a single iteration of AdaBoost on three sample points, starting with uniform weights on the
sample points. All the ground truth labels and predictions are either +1 or —1. In the table below, some values have been
omitted. Which of the following statements can we say with certainty?

True Label Classifier Prediction Initial Weight Updated Weight

X -1 -1 1/3 ?

X, ? +1 1/3 V2/3

X; ? ? 1/3 V2/6
® A Xs updated weight is \/5/6 @® C: X, is misclassified
O B: Xj3’s classifier prediction is —1 O D: X3 is misclassified

In the AdaBoost algorithm, all correctly classified points have their weights changed by the same multiplicative factor.
Since we observe two different updated weights, we know one of x, or x3 is correctly classified, and the other is mis-
classified. Since x; is correctly classified, the error rate is err = 1/3. As the error rate is less than 1/2, the weights of
correctly classified points will decrease and the weights of misclassified points will increase. Hence, X is misclassified
and X3 is correctly classified. As X is correctly classified, it has the same updated weight as X3. But we can’t tell what
X3’s classifier prediction is; only that it is correctly classified.

As an aside, we can confirm the multipliers used for reweighting of misclassified and correctly classified points (in that

order):
err _ ’E:\ﬁ ll—err: /222
1 —err 1/3 err 2/3 2

(16) [4 pts] Consider running the hierarchical agglomerative clustering algorithm on the following set of four points in R?,
breaking ties arbitrarily. If we stop when only two clusters remain, which of the following linkage methods ensures the
resulting clusters are balanced (each have two sample points)? Select all that apply.




0,1
[ ]
(-1,0) (1,0)
(] L J X
(Oa - 1)
[ ]
@ A: Complete linkage @ C: Centroid linkage
O B: Single linkage @ D: Average linkage

Under each of these linkage methods, we know that two adjacent points along a side of the rhombus will first be fused
together. Without loss of generality, assume these are the points (0, 1) and (1, 0). Treating these as a cluster, the average,
maximum and centroid distances to each of the two remaining points are all larger that the distance between the two
points themselves. Therefore, complete linkage, single linkage and average linkage all result in balanced clusters. On
there other hand, single linkage does not, since, for example, (1,0) and (0, —1) have the same distance as (—1,0) and
0,-1).



Q2. [14 pts] Principal Components Analysis

Consider the following design matrix, representing four sample points X; € R2.

—_— N A
S W=

We want to represent the data in only one dimension, so we turn to principal components analysis (PCA).

(1) [5 pts] Compute the unit-length principal component directions of X, and state which one the PCA algorithm would
choose if you request just one principal component. Please provide an exact answer, without approximation. (You will
need to use the square root symbol.) Show your work!

We center X, yielding

I -1
. -1 1
X= 2 2
-2 -2
Then XX = [160 16()]. (Divide by 4 if you want the sample covariance matrix. But we don’t care about the magnitude.)

Its eigenvectors are [1/ V2 1 / \/5]T with eigenvalue 16 and [1/ V2 -1 / \/5]T with eigenvalue 4. The former eigenvector is
chosen.

(Negated versions of these vectors also get full points.)

(2) [5 pts] The plot below depicts the sample points from X. We want a one-dimensional representation of the data, so
draw the principal component direction (as a line) and the projections of all four sample points onto the principal
direction.

Label each projected point with its principal coordinate value (where the origin’s principal coordinate is zero). Give
the principal coordinate values exactly.

6

5 4

4 1 L]

10
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The principal coordinates are %, ) %, and % (Alternatively, all of these could be negative, but they all have to have the

sl

same sign.)

(3) [4 pts] The plot below depicts the sample points from X rotated 30 degrees counterclockwise about the origin.

As in part (b), identify the principal component direction that the PCA algorithm would choose and draw it (as a
line) on the plot. Also draw the projections of the rotated points onto the principal direction.

Label each projected point with the exact value of its principal coordinate.

7

64 &

5 4
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The line passes through the origin and is parallel to the two sample points that are farthest apart, so it’s easy to draw. Rotation
has not changed the principal coordinates: %, %, %, and %. (Again, these could all be negative.)
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Q3. [14 pts] A Decision Tree

In this question we investigate whether students will pass or fail CS 189 based on whether or not they studied, cheated, and
slept well before the exam. You are given the following data for five students. There are three features, “Studied,” “Slept,” and
“Cheated.” The column “Result” shows the label we want to predict.

Studied | Slept | Cheated | Result
Student 1 Yes No No Passed
Student 2 Yes No Yes Failed
Student 3 No Yes No Failed
Student 4 Yes Yes Yes Failed
Student 5 Yes Yes No Passed

(1) [4 pts] What is the entropy H(Result) at the root node? (There is no need to compute the exact number; you may write
it as an arithmetic expression.)

2 2 3 3
H(Result) = — 3 log, 5 + 3 log, 5]

(2) [5 pts] Draw the decision tree where every split maximizes the information gain. (An actual drawing, please; a written
description does not suffice.) Do not perform a split on a pure leaf or if the split will produce an empty child; otherwise,
split. Explain (with numbers) why you chose the splits you chose.

A tree that first splits on “Cheated” and then “Studied.”
(3) [2 pts] Did the tree you built implicitly perform feature subset selection? Explain.
Yes, because it does not use the feature “Slept.”

(4) [3 pts] Suppose you have a sample of n students for some large n, with the same three features. Assuming that we use a

reasonably efficient algorithm to build the tree (as discussed in class), what is the worst-case running time to build the

decision tree? (Write your answer in the simplest asymptotic form possible.) Why?

We have 3 binary features, so the tree’s depth cannot exceed 3 and each sample point participates in at most four treenodes.
Hence, it cannot take more than ®(n) time to build the tree.

13



Q4. [20 pts] Spectral Graph Clustering

Figure 1: An undirected, weighted graph in which all vertices have mass 1. The numbers inside the vertices are their indices
(not masses).

In this problem, we approximate the sparsest cut of the graph above with the spectral graph clustering algorithm. Recall the
spectral graph clustering optimization objective is to
find y that minimizes y Ly
subjectto  y'y =16
and 17y=0.

(1) [4 pts] Write out the Laplacian matrix L.

100 -100 0 0 0 0

-100 150 =50 0 0 0
0 =50 150 -100 0 0
0 0 -100 110 -10 0
0 0 0 -10 110 -100
0 0 0 0 -100 100

(2) [3 pts] What is the rank of L? Explain your answer.
5, because the Laplacian matrix of a connected graph has one and only one eigenvector with eigenvalue zero.
(3) [4 pts] L has the following six unit eigenvectors, listed in random order. Write down the Fiedler vector. Then explain

how you can tell which one is the Fiedler vector without doing a full eigendecomposition computation. (There are
several ways to see this; describe one.)

O [0.36,-0.58,0.61, -0.4,0.04, -0.03] O [-0.56,-0.32,0.43,0.62, -0.06, -0.1]
O 10.3,-0.33,-0.23,0.3, -0.6,0.55] ® [0.36,0.34,0.25,0.19, -0.55, -0.6]
O [-0.41,0.41,0.41,-0.41,-0.41,0.41] O [0.41,0.41,0.41,0.41,0.41,0.41]

The Fiedler vector is v, = [0.36,0.34,0.25,0.19, -0.55, —0.6]. Since we know these are all eigenvectors of the Laplacian
matrix L, one way to identify it is to explicitly multiply the first row of L by an eigenvector, and divide by the first component
of the eigenvector to reveal its eigenvalue. (The Fiedler vector has eigenvalue A, = 6.5; all the others except v; have larger

14



eigenvalues.) An easier way is to notice that only the Fiedler vector is monotonic in one direction (decreasing in this example).

(4) [5 pts] How does the sweep cut decide how to cut this graph into two clusters? (Explain in clear English sentences.) For
every cut considered by the algorithm, write down the ‘“‘score” it is assigned by the sweep cut algorithm. (You may use
fractions; decimal numbers aren’t required.) Identify the chosen cut by writing down two sets of vertex indices.

The sweep cut sorts the values in the Fiedler vector, then decides which pair of consecutive vertices to cut between by explicitly
computing the sparsity of each of the five possible cuts. The cut with the lowest sparsity wins.

From left to right in the Fiedler vector, the sparsity of each cut is 20, % =6.25, % =11.11, % = 1.25, and 20.
The clusters are {5, 6} and {4, 3,1, 2}.
(Cut between the values 0.19 and —0.55.)

(5) [4 pts] Suppose we have computed the four eigenvectors vy, v, v3,v4 corresponding to the four largest eigenvalues.
(For simplicity, assume no two eigenvectors have the same eigenvalue.) We want to write a constrained optimization
problem that identifies the eigenvector corresponding to the fifth-largest eigenvalue. Explain how to modify the
optimization problem at the beginning of this question so that the vector y it finds is the desired eigenvector. (You may
change the objective function and/or add constraints, but they must be mathematical, and you cannot write things like
“subject to y being the eigenvector corresponding to the fifth-largest eigenvalue.”)

Add the following constraints: vJy = 0, v;y =0, v,y = 0.

15



Q5. [12 pts] Hierarchical Spectral Graph Multi-Clustering

In this problem, we shall consider the same graph as in the previous question, but we use multiple eigenvectors to perform
3-cluster clustering with the algorithm of Ng, Jordan, and Weiss (as opposed to the 2-cluster clustering we performed in the last
question).

(1) [4 pts] Based on the six eigenvectors of L given in the previous question, write down the spectral vector (as defined in
the lecture notes) for each vertex 1, ..., 6 in that order.

041 036 -0.56
041 034 -032
041 025 043
041 019 0.62 [
041 -0.55 -0.06
041 -06 -0.1

The matrix of spectral vectors is

(2) [8 pts] We shall now cluster the six raw, unnormalized spectral vectors obtained above using hierarchical agglomerative
clustering with the Euclidean distance metric and single linkage. In contrast to what was discussed in class, we are not
normalizing the six spectral vectors (because we don’t want you to work that hard). Draw the complete single linkage
dendrogram on paper. The six integer points on the x-axis, 1,...,6, should represent the vertices of the graph in the
order of their indices. The y-axis should indicate the linkage distances, as is standard for dendrograms. The numerical
distance at which each fusion happens should be clearly marked on your figure.

Points 5 and 6 merge first; the Euclidean distance between them is 0.06. Points 3 and 4 merge next; the Euclidean distance
between them is 0.2. Points 1 and 2 merge next; the Euclidean distance between them is 0.24. The single linkage distance
between {1,2} and {3, 4} is 0.76. The single linkage distance between {1, 2} and {5, 6} is 0.93. That between {3, 4} and {5, 6} is
0.94. Therefore, the fourth merger is between {1, 2} and {3, 4}. The clusters after the fourth merger are {1, 2, 3,4} and {5, 6},
matching what we obtained in the previous question. {1,2,3,4} and {5, 6} merge at 0.93. The green dotted line indicates the
2-cluster clustering. The red dotted line indicates the 3-cluster clustering. (Note tha students aren’t asked to specify those lines.)

12+ .

0.6 .
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Q6. [10 pts] A Miscellany

(1) [4 pts] Consider a single unit in a neural network that receives two binary inputs xj, x, € {0, 1} and computes a linear
combination followed by a threshold activation function, namely,

o) = {1, 720,

0 otherwise.

The unit is illustrated below. We have chosen a bias term of b = 5. Provide values for the two weights w; and w, that
allow you to compute the NAND function (which is O if and only if both inputs are 1).

NAND

b =5
x1wl\‘
e

5

wi = =3, wp = =3 will work.

(2) [6 pts] We are drawing sample points from a distribution with the probability density function (PDF) f(x) = % e but
we do not know the mean u € R. We decide to estimate u with maximum likelihood estimation (MLE). Unfortunately,
we have only two sample points X, X, € R.

Derive the likelihood and the log-likelihood for this problem. Then show that every value of i between X, and X; is
a maximum likelihood estimate.

The likelihood is |
L(ﬂa Xl s Xz) = Zei‘Xl *,u\e—p(z,#',

and the log-likelihood is
C(u: X1, X2) = =|Xi — p| = |Xo — | = In4.

For any u between X; and X, (inclusive), the log-likelihood is —|X| — X»| — In4. For any yu outside that range, it is lesser. (For
example if u is less than min{X, X,}, then the log-likelihood is —|X; — X5| — 2|u — min{X;, X3}| — In 4).
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Q7. [16 pts] Dual Ridge Regression & Leave-One-Out Error

[This question has four independent parts. If you get stuck on one, try the others. Each part depends on the statements made in
the previous parts, but not on your answer to the previous parts. Please show your work!]

Let X be an n X d design matrix representing n sample points with d features. (The last column of X may or may not be all 1’s,
representing a fictitious dimension; it won’t affect this question.) Let y € R” be a vector of labels. As usual, X; denotes the ith
sample point expressed as a column vector (X;" is row i of X) and y; denotes the ith scalar component of y. Recall that ridge
regression finds the weight vector w* minimizing the cost function

J(w) = [Xw = yII* + Allwl?

where A > 0 is the regularization hyperparameter. Because A4 > 0, every regression problem we will consider here has exactly
one unique minimizer. For X and y, the unique minimizer of J is denoted by w*, giving a unique linear hypothesis h(z) = w* - z.

(1) [4 pts] Regression doesn’t usually have zero training error; we would like to check the value A(X;) = w* - X; to see how
close it is to y;. Recall the dual form of ridge regression and use it to show that w* - X; = y" (K + AI)"'K;, where K
is the kernel matrix and K; is column i of K. Show your work. (Note: we are not lifting the sample points to another
feature space; we are just doing dual ridge regression with kernel matrix K = XX.)

In dual ridge regression, we set w = X'a where a € R” is a vector of dual weights, and the optimal dual solution is a* =
(K+AD7 'y, sow* = XT(K+ A" 'y. Thus w*-X; = y"(K+AI)"'XX;. Columniof K = XX7 is XX;, sow*-X; = y (K+AD™'K,.

The Leave-One-Out (LOQ) error of a regression algorithm is the expected loss on a randomly chosen training point when you
train on the other n — 1 points, leaving the chosen point out of training. Let X’ denote the (n — 1) X d design matrix obtained by
removing the sample point X; (the ith row of X) from X, and let y' € R"~!' denote the vector obtained by removing y; from y.
Let J be the cost function of ridge regression on X’ and y’, and let w' be the optimal weight vector that minimizes J(w).

(2) [4 pts] Suppose that after we perform ridge regression on X’ and y’, we discover that our linear hypothesis function just
happens to fit the left-out sample point perfectly; that is, w' - X; = y;.

Prove that w* = w'. That is, removing the sample point X; did not change the weights or the linear hypothesis. (Hint:
find the difference between J(w) and J'(W) (for an arbitrary w), then reason about the relationships between J(w), J'(w),
Ji(wh), and J(w').)

Jwy= Y (- w—y? + WP and  J(w) = Y (X w =)+ AW,
j=1

J J#i

Hence J(w) — Ji(w) = (X; - w — y;)%. Therefore, J(w) > Ji(w) for all w. By assumption, w' - X; = y;, so J(w') = J/(w'). Recall
that w' is the weight vector that minimizes J'.

It follows that for every w € R?, J(w) > Ji(w) > Ji(w) = J(w'). Hence w' minimizes J. J has only one unique minimizer,
which we call w*, so w* = w'.

Suppose we are not so lucky, and it turns out that w' - X; # y;. Let y* € R”" denote the vector obtained by taking y and changing
the ith component, replacing y; with w' - X;. Let w”) be the optimal weight vector that minimizes the ridge regression cost
function on the inputs X and y. Our result from part (b) shows that w”) = w'.

(3) [4 pts] From part (a), show that w - X; - w* - X; = (W - X; — y,) (K + A);'K;, where (K + AI);" denotes row i of
(K + AD'. (Hint: The result from part (a) implies that w? - X; = y? - (K + AI)™'K;. What does y —y look like?)

y?—y=[0 ... 0 w-X;—y; 0 ... 0]T,avector of all zeros except in component i, so by part (a),

WO Xi—w X = (v =) K+ AN K = (W X = y) (K + A7 K = W0 X = ) (K + AD; K.
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The Leave-One-Out error is defined to be
1~ 1
R I l'Xi_izz_ (l)'Xi_iz-
Loo = - ;ZI(W yi) - ;:1 (w i)

The LOO error is often an excellent estimator for the regression loss on unseen data. In general, the computation of LOO error
can be very costly because it requires training the algorithm » times. But for dual ridge regression, remarkably, the LOO error
can be computed by training the algorithm only once! Let’s see how to compute the terms in the summation quickly.

WX —yi

4) [4pts] Show that W@ X; -y, = — 12
(@) 14 pis] Show tha YT TS K+ ADK

From part (c), we have

WX —y) = (W - X; =)

W X; — y)(K + AD;'K;

W Xi—y) (1 -K+aD'K) = w-X;—y
; - Xi =i
wi . X, —y, = W—{l
1 - (K +AD;'K;

Postscript: We can add the kernel trick to this method if we want; it adds no difficulties, though for speed we usually want to
use the kernel function to compute K and each w* - X;. The technique also requires us to compute the diagonal of (K + A1)~ K,
which is probably best done by a Cholesky factorization of (K + A7)~ and backsubstitution.
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