
148 Jonathan Richard Shewchuk

24 Boosting; Nearest Neighbor Classification

ADABOOST (Yoav Freund and Robert Schapire, 1997)

[We’re done with unsupervised learning. This week I’m going back to classifiers.]

AdaBoost (“adaptive boosting”) is an ensemble method for classification (or regression) that
– trains multiple learners on weighted sample points [like bagging];
– uses di↵erent weights for each learner;
– increases weights of misclassified training points;
– gives bigger votes to more accurate learners.

Input: n ⇥ d design matrix X, vector of labels y 2 Rn with yi = ±1.

Ideas:
– Train T classifiers G1, . . . ,GT . [“T” stands for “trees”]
– Weight for sample point Xi in Gt grows according to how many of G1, . . . ,Gt�1 misclassified it.

[Moreover, if Xi is misclassified by very accurate learners, its weight grows even more.]
[And, the weight shrinks every time Xi is correctly classified.]

– Train Gt to try harder to correctly classify sample pts with larger weights.
– Metalearner is a linear combination of learners. For test point z, M(z) =

PT
t=1 �tGt(z).

Each Gt is ±1, but M is continuous. Return sign of M(z).

[In the previous lecture on ensemble methods, I talked briefly about how to assign di↵erent weights to
sample points. It varies for di↵erent learning algorithms. For example, in regression we usually modify
the risk function by multiplying each point’s loss function by its weight. In a soft-margin support vector
machine, we modify the objective function by multiplying each point’s slack by its weight.]
[Boosting works with most learning algorithms, but it was originally developed for decision trees, and
boosted decision trees are still very popular and successful. For decision trees, we use a weighted entropy
where instead of computing the proportion of points in each class, we compute the proportion of weight in
each class.]

In iteration T , what classifier GT and coe�cient �T should we choose? Pick a loss fn L(prediction, label).
Find GT & �T that minimize

Risk =
1
n

nX

i=1

L(M(Xi), yi), M(Xi) =
TX

t=1

�tGt(Xi).

AdaBoost metalearner uses exponential loss function

L(⇢, `) = e�⇢` =
(

e�⇢ ` = +1
e⇢ ` = �1

[This loss function is for the metalearner only. The individual learners Gt usually use other loss functions,
if they use a loss function at all.]
Important: label ` is binary, Gt is binary, but ⇢ = M(Xi) is continuous!

[The exponential loss function has the advantage that it pushes hard against badly misclassified points.
That’s one reason why it’s usually better than the squared error loss function for classification in a met-
alearner. It’s similar to why in neural networks we often prefer the cross-entropy loss function to the squared
error.]

Boosting; Nearest Neighbor Classification 149

n · Risk =

nX

i=1

L(M(Xi), yi) =
nX

i=1

e�yi M(Xi)

=

nX

i=1

exp

0
BBBBBB@�yi

TX

t=1

�tGt(Xi)

1
CCCCCCA =

nX

i=1

TY

t=1

e��tyiGt(Xi) (yiGt(Xi) = ±1
�1! Gt misclassifies Xi

=

nX

i=1

w(T)
i e��T yiGT (Xi), where w(T)

i =

T�1Y

t=1

e��tyiGt(Xi)

= e��T
X

yi=GT (Xi)

w(T)
i + e�T

X

yi,GT (Xi)

w(T)
i [correctly classified and misclassified]

= e��T

nX

i=1

w(T)
i + (e�T � e��T)

X

yi,GT (Xi)

w(T)
i .

What GT minimizes the risk? The learner that minimizes the sum of w(T)
i over all misclassified pts Xi!

[This is interesting. By manipulating the formula for the risk, we’ve discovered what weight we should
assign to each sample point. If we want to minimize the risk, we should find the classifier that minimizes the
total weight of the misclassified points for this weight function w(T)

i . It’s a complicated function, but we can
compute it. A useful observation is that each learner’s weights are related to the previous learner’s weights:]

Recursive definition of weights:

w(T+1)
i = w(T)

i e��T yiGT (Xi) =

8><
>:

w(T)
i e��T yi = GT (Xi),

w(T)
i e�T yi , GT (Xi).

[This recursive formulation is a nice benefit of choosing the exponential loss function. Notice that a weight
shrinks if the point was classified correctly by learner T , and grows if the point was misclassified.]
[Now, you might wonder if we should just pick a learner that classifies all the training points correctly. But
that’s not always possible. If we’re using a linear classifier on data that’s not linearly separable, some points
must be classified wrongly. Moreover, it’s NP-hard to find the optimal linear classifier, so in practice GT
will be an approximate best learner, not the true minimizer of training error. But that’s okay.]
[You might ask, if we use decision trees, can’t we get 100% training accuracy? Usually we can. But
interestingly, boosting is usually used with short, imperfect decision trees instead of tall, pure decision trees,
for reasons I’ll explain later.]
[Now, let’s derive the optimal value of �T .]

To choose �T , set d
d�T

Risk = 0:

0 = �e��T

nX

i=1

w(T)
i + (e�T + e��T)

X

yi,GT (Xi)

w(T)
i ; [now divide both sides by the first term]

0 = �1 + (e2�T + 1) errT , where errT =

P
yi,GT (Xi) w(T)

i
Pn

i=1 w(T)
i

; [GT ’s weighted error rate]

�T =
1
2

ln

1 � errT

errT

!
.

[So now we have derived the optimal metalearner!]

150 Jonathan Richard Shewchuk

– If errT = 0, �T = 1. [So a perfect learner gets an infinite vote.]
– If errT = 1/2, �T = 0. [So a learner with 50% weighted training accuracy gets no vote at all.]

[More accurate learners get bigger votes in the metalearner. Interestingly, a learner with training accuracy
worse than 50% gets a negative vote. A learner with 40% accuracy is just as useful as a learner with 60%
accuracy; the metalearner just reverses the sign of its votes.]

[Now we can state the AdaBoost algorithm.]

AdaBoost alg:
1. Initialize weights wi 1

n ,8i 2 [1, n].
2. for t 1 to T

a. Train Gt with weights wi.
b. Compute weighted error rate err

P
misclassified wiP

all wi
; coe�cient �t 1

2 ln
⇣

1�err
err

⌘
.

c. Reweight pts: wi wi ·
(

e�t , Gt misclassifies Xi
e��t , otherwise = wi ·

8>>>><
>>>>:

q
1�err

err ,q
err

1�err .

3. return metalearner h(z) = sign
⇣PT

t=1 �tGt(z)
⌘
.

boost0.png, boost2.png, boost4.png [At left, all the training points have equal weight. Af-
ter choosing a first linear classifier, we increase the weights of the misclassified points and
decrease the weights of the correctly classified points (center). We train a second classifier
with these weighted points, then again adjust the weights of the points according to whether
they are misclassified by the second classifier.]

Why boost decision trees? [As opposed to other learning algorithms?] Why short trees?
– Fast. [We’re training many learners, and running many learners at classification time too. Short

decision trees that only look at a few features are very fast at both training and testing.]
– No hyperparameter search needed. [Unlike SVMs, neural nets, etc.] [UC Berkeley’s Leo Breiman

called AdaBoost with decision trees “the best o↵-the-shelf classifier in the world.”]
– Easy to make a tree beat 55% training accuracy [or other threshold] consistently.
– Easy bias-variance control. Boosting can overfit. AdaBoost trees are usually short, to reduce overfit-

ting.
[As you train more learners, the AdaBoost bias decreases. The AdaBoost variance is more compli-
cated: it often decreases at first, because successive trees focus on di↵erent features, but often it later
increases. Sometimes boosting overfits after many iterations, and sometimes it doesn’t; it’s hard to
predict when it will and when it won’t.]

Boosting; Nearest Neighbor Classification 151

– AdaBoost + short trees is a form of subset selection.
[Features that don’t improve the metalearner’s predictive power enough aren’t used at all. This helps
reduce overfitting and running time, especially if there are a lot of irrelevant features.]

– Linear decision boundaries don’t boost well.
[Boosting linear classifiers gives you an approximately linear classifier, so SVMs aren’t a great choice.
Methods with nonlinear decision boundaries benefit more from boosting, because they allow boosting
to reduce the bias faster. Sometimes you’ll see examples where people do AdaBoost with depth-one
decision trees with just one decision each. But that’s not ideal, because depth-one decision trees are
linear. Even depth-two decision trees boost substantially better.]

More about AdaBoost:
– Posterior prob. can be approximated: P(Y = 1|x) ⇡ 1/(1 + e�2M(x)).
– Exponential loss is vulnerable to outliers; for corrupted data, use other loss.

[Better loss functions have been derived for dealing with outliers. Unfortunately, they have more
complicated weight computations.]

– If every learner beats accuracy µ for µ > 50%, metalearner training accuracy will eventually be 100%.
[You will prove this in Homework 7.]

– [The AdaBoost paper and its authors, Freund and Schapire, won the 2003 Gödel Prize, a prize for
outstanding papers in theoretical computer science.]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boosting Iterations

Tr
ai

ni
ng

 E
rro

r

Misclassification Rate

Exponential Loss

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Boosting Iterations

Te
st

 E
rro

r

Single Stump

244 Node Tree

trainboost.pdf, testboost.pdf (ESL, Figures 10.2, 10.3) [Training and testing errors for
AdaBoost with stumps, depth-one decision trees that make only one decision each. At
left, observe that the training error eventually drops to zero, and even after that the average
loss (which is continuous, not binary) continues to decay exponentially. At right, the test
error drops to 5.8% after 400 iterations, even though each learner has an error rate of about
46%. AdaBoost with more than 25 stumps outperforms a single 244-node decision tree. In
this example no overfitting is observed, but there are other datasets for which overfitting is
a problem.]

152 Jonathan Richard Shewchuk

NEAREST NEIGHBOR CLASSIFICATION

[I saved the simplest classifier for the end of the semester.]

Idea: Given query point q, find the k sample pts nearest q.
Distance metric of your choice.
Regression: Return average label of the k pts.
Classification: Return class with the most votes from the k pts OR

return histogram of class probabilities.

[The histogram of class probabilities tries to estimate the posterior probabilities of the classes. Obviously,
the histogram has limited precision. If k = 3, then the only probabilities you’ll ever return are 0, 1/3, 2/3,
or 1. You can improve the precision by making k larger, but you might underfit. The histogram works best
when you have a huge amount of data.]

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=10

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=1

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=100

allnn.pdf (ISL, Figures 2.15, 2.16) [Examples of 1-NN, 10-NN, and 100-NN. A larger k
smooths out the boundary. In this example, the 1-NN classifier is badly overfitting the
data, and the 100-NN classifier is badly underfitting. The 10-NN classifier does well: it’s
reasonably close to the Bayes decision boundary (purple). Generally, the ideal k depends
on how dense your data is. As your data gets denser, the best k increases.]

[There are theorems showing that if you have a lot of data, nearest neighbors can work quite well.]

Theorem (Cover & Hart, 1967):
As n! 1, the 1-NN error rate is < 2B � B2 where B = Bayes risk.

if only 2 classes,  2B � 2B2

[There are a few technical requirements of this theorem. The most important is that the training points and
the test points all have to be drawn independently from the same probability distribution. The theorem ap-
plies to any separable metric space, so it’s not just for the Euclidean metric.]

Theorem (Fix & Hodges, 1951):
As n! 1, k ! 1, k/n! 0, k-NN error rate converges to B. [Which means Bayes optimal.]

