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Clustering w/Multiple Eigenvectors

[When we use the Fiedler vector for spectral graph clustering, it tells us how to divide a graph into two
graphs. If we want more than two clusters, we can use divisive clustering: we repeatedly cut the subgraphs
into smaller subgraphs by computing their Fiedler vectors. However, there are several other methods to
subdivide a graph into k clusters in one shot that use multiple eigenvectors rather than just the Fiedler
vector vp. These methods sometimes give better results. They use k eigenvectors in a natural way to cluster
a graph into k subgraphs.]

For k clusters, compute first k eigenvectors v = 1,v,,..., v, of generalized eigensystem Lv = AMv.
- _ 1 _ .
Scale them so that vl.TMvi =1.Eg,v = \/Wl' Now VTMV = I. [The eigenvectors are M-orthogonal.]
Vi [V’s columns are the eigenvectors with the &
smallest eigenvalues.]
Vi [Yes, we do include the all-1’s vector v; as one of
V= = the columns of V]
Vi
Vi
-

[Draw this by hand. | eigenvectors.pdf ||

nxk

Row V; is spectral vector [my name] for vertex i. [The rows are vectors in a k-dimensional space I’1l call the
“spectral space.” When we were using just one eigenvector, it made sense to cluster vertices together if their
components were close together. When we use more than one eigenvector, it turns out that it makes sense to
cluster vertices together if their spectral vectors point in similar directions.]

Normalize each row V; to unit length.
[Now you can think of the spectral vectors as points on a unit sphere centered at the origin.]

X I I l. —
[Draw this by hand ’ vectorclusters.png ‘] [A 2D example showing two clusters on a circle.
If the graph has k components, the points in each cluster will have identical spectral vectors
that are exactly orthogonal to all the other components’ spectral vectors (left). If we modify
the graph by connecting these components with small-weight edges, we get vectors more

like those at right—not exactly orthogonal, but still tending toward distinct clusters.]

k-means cluster these vectors.

[Because all the spectral vectors lie on the sphere, k-means clustering will cluster together vectors that are
separated by small angles.]
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SpectralClustering

lcompkmeans.png, compspectral.png‘ [Comparison of point sets clustered by k-means—
just k-means by itself, that is—vs. a spectral method. To create a graph for the spectral
method, we use an exponentially decaying function to assign weights to pairs of points, like
we used for image segmentation but without the brightnesses.]

Invented by [our own] Prof. Michael Jordan, Andrew Ng [when he was still a student at Berkeley], Yair
Weiss.

[This wasn’t the first algorithm to use multiple eigenvectors for spectral clustering, but it has become one of
the most popular.]
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THE GEOMETRY OF HIGH-DIMENSIONAL SPACES

[High-dimensional geometry sometimes acts in ways that are completely counterintuitive, defying our intu-
itions from low-dimensional geometry.]

Consider a random point p ~ N(0,1) € R,
What is the distribution of its length?

[Looking at the one-dimensional normal distribu-
tion, you would expect it to be very common that
the length is close to zero, a bit less common that
the length is close to 1 or —1, and not rare for the
length to be close to 2 or —2. But in high dimen-

sions, that intuition is completely wrong.] normal.pdf | [A one-dimensional normal distribution.]

[If the dimension is very high, the vast majority of the random points are at approximately the same distance
from the mean. So they lie in a thin shell. Why? To answer that, let’s study the square of the distance. By
Pythagoras’ Theorem, the squared distance from p to the mean is]

IpI* = pt+p3+...+p7

[Each component p; is sampled independently from a univariate normal distribution with mean zero and
variance one. The square of a component, pl.z, is said to come from a chi-squared distribution.]

pi~N@©O,1), p*~x* 1), E[pl=1, Va(p?)=2

[Recall that when you add d independent, identically distributed random numbers, you scale their mean and
variance by d, and the standard deviation is the square root of the variance.]

EllpI*l = dE[pil=d
Var(|pl*) = dVar(p?) = 2d
SD(Ipl?) = v2d

For large d, ||p|| is concentrated in a thin shell around radius Vd with a thickness proportional to V2d.
[The mean value of [|p|| isn’t exactly Vd, but it is close, because the mean of ||p||2 is d and the standard
deviation is much, much smaller. Likewise, the standard deviation of ||p|| isn’t exactly v 2d, but it’s close.]

[So if d is about a million, imagine a million-dimensional egg whose radius is 1,000, and the thickness of
the shell is about 67, which is about 10 times the standard deviation. The vast majority of random points are
in the eggshell. Not inside the egg; actually in the shell itself. It is very strange that random vectors sampled
from a high-dimensional normal distribution almost all have almost the same length.]

[There is a statistical principle hiding here. Suppose you want to estimate the mean of a distribution—
in this case, the chi-squared distribution. The standard way to do that is to sample very many numbers
from the distribution and take their mean. The more numbers you sample, the more accurate your estimate
is—that is, the smaller the standard deviation of your sample mean is. When we sample a vector from a
million-dimensional normal distribution and compute its length, that’s exactly what we’re doing!]
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What about a uniform distribution? Consider concentric spheres of radii r & r — €.

[Draw this by hand ] [Concentric balls. In high dimensions, almost every
point chosen uniformly at random in the outer ball lies outside the inner ball.]

Volume of outer ball o« ¢
Volume of inner ball « (r — €)¢
Ratio of inner ball volume to outer =

— o) d d
r-9 =|1- &) = exp _« which is small for large d.
rd r r

E.g.if S =0.1&d =100, inner ball has 0.9'% = 0.0027% of volume.
r

Random points from uniform distribution in ball: nearly all are in outer shell.
? ? ”  Gaussian : nearly all are in some thin shell.

’

Lessons:
— In high dimensions, sometimes the nearest neighbor and 1,000th-nearest neighbor don’t differ much!
— k-means clustering and nearest neighbor classifiers are less effective for large d.

Angles between Random Vectors

What is the angle 6 between a random p ~ N(0, ) € R and an arbitrary g € R??

Without loss of generality, setg=[1 0 0...0]".
[The value of g doesn’t matter, because the direction that p points in is uniformly distributed over all possible
directions. By a formula we learned early this semester, the angle between p and ¢ is 6, where ... ]

pP-q _ pi

Ipiligl — lipl
1

Vd

If d is large, cos 6 is almost always very close to zero; 6 is almost always very close to 90°!

cosf =

~

E[cos 0]

[In high-dimensional spaces, two random vectors are almost always very close to orthogonal. To put it
another way, an arbitrary vector is almost orthogonal to the vast majority of all the other vectors!]

[A former CS 189/289A head TA, Marc Khoury, has a nice short essay entitled “Counterintuitive Properties
of High Dimensional Space”, which you can read at
https://marckhoury.github.io/blog/counterintuitive-properties-of-high-dimensional-space ]
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RANDOM PROJECTION

An alternative to PCA as preprocess for clustering, classification, regression.
Approximately preserves distances between points!

[We project onto a random subspace instead of the PCA subspace, but sometimes preserves distances better
than PCA. It works best when you project a very high-dimensional space to a medium-dimensional space.
Because it roughly preserves the distances, algorithms like k-means clustering and nearest neighbor classi-
fiers will give similar results to what they would give in high dimensions, but they run much faster.]

21In(1/6
Pick a small €, a small 6, and a random subspace S C R4 of dimension k, where k = {ﬁ} .
€2 —¢€

A . . . . d
For any pt ¢, let g be orthogonal projection of ¢ onto S, multiplied by \/; .
[The multiplication by +d/k helps preserve the distances between points after you project.]

Johnson-Lindenstrauss Lemma (modified):
For any two pts ¢, w € RY, (1 —€) |lg — w|> < ||§ — w|> < (1 + €) |lg — w||* with probability > 1 — 26.
Typical values: € € [0.02,0.5], 6 € [1 /n3,0.05]. [You choose € and ¢ according to your needs.]

[With these ranges, the squared distance between two points after projecting might change by 2% to 50%.
In practice, you can experiment with & to find the best speed-accuracy tradeoff. If you want all inter-sample-
point distances to be accurate, you should set § smaller than 1/12, so you need a subspace of dimension
O(ogn). Reducing 6 doesn’t cost much, but reducing e costs more. You can bring 1,000,000 sample points
down to a 10,000-dimensional space with at most a 6% error in the distances.]

[What is remarkable about this result is that the dimension d of the input points doesn’t matter!]

Pairwise distances distribution for n_components=1000 9 Histogram of pairwise distance rates for n_components=1000
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100000to1000.pdf | [Comparison of inter-point distances before and after projecting points
in 100,000-dimensional space down to 1,000 dimensions.]

[Why does this work? A random projection of g — w is like taking a random vector and selecting k compo-
nents. The mean of the squares of those kK components approximates the mean for the whole population.]

[How do you get a uniformly distributed random projection direction? You can choose each component
from a univariate Gaussian distribution, then normalize the vector to unit length. How do you get a random
subspace? You can choose k random directions, then use Gram—Schmidt orthogonalization to make them
mutually orthonormal. Interestingly, Indyk and Motwani show that if you skip the expensive normalization
and Gram-Schmidt steps, random projection still works almost as well, because random vectors in a high-
dimensional space are nearly equal in length and nearly orthogonal to each other with high probability.]
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PREDICTING PERSONALITY FROM FACES

SCIENTIFIC REPQRTS

Signatures of personality on dense
3D facial images

Sile Hu, Jieyi Xiong'2, Pengcheng Fu?, Lu Qiao?, Jingze Tan*, Li Jin* & Kun Tang*

It has long been speculated that cues on the human face exist that allow observers to make reliable
judgments of others’ personality traits. However, direct evidence of association between facial shapes
Accepted: 27 January 2017 and personality is missing from the current literature. This study assessed the personality attributes
Published online: 06 March 2017 of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model
('Big Five’), and collected their neutral 3D facial images. Dense anatomical correspondence was
established across the 3D facial imaaes in order to allow hiah-dimensional auantitative analvses of

Received: 27 July 2016

Hu et. al (2017).
Big Five (BF) model of personality:

E: extraversion

— A: agreeableness

— C: conscientiousness
N: neuroticism

— O: openness

[Researchers have found that these five personality factors are approximately orthogonal to each other. They
are highly heritable and highly stable during adulthood.]

Can we predict these traits from 3D faces?

[Studies have shown that people looking at photographs of static faces with neutral expressions can iden-
tify the traits better than chance, especially for conscientiousness, extraversion, and agreeableness. This
experiment asks whether machine learning can do the same with 3D reconstructions of faces. The subjects
were 834 Han Chinese volunteers in Shanghai, China. We don’t know whether any of these results might
generalize to people who are not Han Chinese. ]

[The faces were scanned in high-resolution 3D and a non-rigid face registration system was used to fit a
grid of 32,251 vertices to each face in a manner that maps each vertex to an appropriate landmark on the
face. (They call this “anatomical homology.”) So the design matrix X was 834 x 100,053, representing 834
subjects with 32,251 3D features each.]

[Subject personalities were evaluated with a self-questionnaire, namely our own Berkeley Personality Lab’s
Big Five Inventory, translated into Chinese. The authors treated men and women separately.]
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Uses partial least squares (PLS) to find associations between personality & faces.

[Everything from here to the end is spoken, not written.]

Partial least squares (PLS) is like a supervised version of PCA. It takes in two matrices X and Y with the
same number of rows. In our example, X is the face data and Y is the personality data for the 834 subjects.
Like PCA, PLS finds a set of vectors in face space that we think of as the most important components. But
whereas PCA looks for the directions of maximum variation in X, PLS looks for the directions in X that
maximize the correlation with the personality traits in matrix Y.

The researchers found the top 20 or so PLS components and used cross-validation to decide which compo-
nents have predictive power for each personality trait. They found that the top two components for extraver-
sion in women were predictive, but no components for the other four traits in women were predictive. Men
are easier to analyze: they found two or three components were predictive for each of extraversion, agree-
ableness, conscientiousness, and neuroticism in men. However, the correlations were statistically significant
only for agreeableness and conscientiousness.

PLS1-3 Agreeableness

r=0.233

Male

High

Conscientiousness
=0.309

Low

DD @D

male.pdf | [The relationship between male faces, agreeableness, and conscientiousness.
The large, colored faces are the mean faces. Colors indicate the values in the most pre-
dictive PLS component vector.]

More agreeable men correlate with much wider mouths that look a bit smiley even when neutral; stronger,
forward jaws; wider noses; and shorter faces, especially shorter in the forehead, compared to less agreeable
men. More conscientious men tend to have higher, wider eyebrows; wider, opened eyes; a withdrawn upper
lip with more mouth tension; and taller faces with more pronounced brow ridges (the bone protuberance
above the eyes). The authors note that men with low A and C scores look both more relaxed and more
indifferent.
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PLSI1-2

Extraversion

é @ 7=0.209

Low . . High

female.pdf | [The relationship between female faces and extraversion. The large, colored
face is the mean face. Colors illustrate the most predictive PLS component vector.]

Female

More extraverted women correlate with rounder faces, especially in profile, with a more protruding nose
and lips but a recessed chin, whereas the introverts have more flat, square-shaped faces. To my eyes, the
extraverts also have more expressive mouths.

It’s interesting is that physiognomy, the art of judging character from facial shape, used to be considered
a pseudoscience, but it’s been making a comeback in recent years with the help of machine learning. One
reason it fell into disrepute is because, historically, it was sometimes applied across races in fallacious and
insulting ways. But if you want to train classifiers that guess people’s personalities with some accuracy, you
probably need a different classifier for each race. This is a classifier trained exclusively for one race, Han
Chinese, which is probably part of why it works as well as it does. If you tried to train one classifier to work
on many different races, I suspect its performance would be much worse.

Another thing that’s notable is that the authors were able to find statistically significant correlations for some
personality traits, the majority of traits defeated them. So while physiognomy has some predictive power,
it’s only weakly predictive. It’s an open question whether machine learning will ever be able to predict
personality from visual information substantially better than this or not. Adding a time dimension and
incorporating people’s movements and dynamic facial expressions seems like a promising way to improve
personality predictions.

Tools like this raise some ethical issues. The one that concerns me the most is that, if tools like this are
emerging now, many governments probably already had similar tools ten years ago, and have probably been
using them to profile us.

One student asked whether these methods might be used by employers to screen prospective employees.
I think that tools like this are inferior to simply giving an interviewee a personality test. Such tests are legal
in the USA, so long as their questions are not found to violate an employee’s right to privacy and the results
are not used to discriminate against legally protected groups. The most troubling part of using physiognomy
to screen employees would not be that personality testing is unlawful. (It isn’t, and quite a few companies
do it.) It would be that physiognomy isn’t nearly accurate enough. An employer who uses a poorly designed
or unvalidated personality test to make personnel decisions might run a higher risk that a court might rule
that the test could have a discriminatory effect, violating Title VII of the Civil Rights Act of 1964. Also,
they probably won’t make good decisions. But perhaps in the future, better measurements, better statistical
procedures, and better algorithms might overcome these problems.



