124 Jonathan Richard Shewchuk

21 The Singular Value Decomposition; Clustering

The Singular Value Decomposition (SVD) [and its Application to PCA]

Problems: Computing X7 X takes ©(nd?) time.
X "X is poorly conditioned — numerically inaccurate eigenvectors.
[The SVD improves both these problems.]

[Earlier this semester, we learned about the eigendecomposition of a square, symmetric matrix. Unfortu-
nately, nonsymmetric matrices don’t eigendecompose nearly as nicely, and non-square matrices don’t have
eigenvectors at all. Happily, there is a similar decomposition that works for all matrices, even if they’re not
symmetric and not square.]

Fact: If n > d, we can find a singular value decomposition X = UDV™

X = U D VT = Zle Siutiv]
. ——
diagonal rank 1
01 5 0 Vi outer product
= ||y 2 matrix
0 & <V
Ugq
dxd dxd
Viv=I
nxd nxd

orthonormal v;’s are
right singular vectors of X

U'U=1I
orthonormal u;’s are left singular vectors of X

[Draw this by hand; write summation at the right last. | svd.pdf ||

Diagonal entries 0y, ..., 04 of D are nonnegative singular values of X.

[Some of the singular values might be zero. The number of nonzero singular values is equal to the rank of X.
If X is a centered design matrix for sample points that all lie on a line, there is only one nonzero singular
value. If the centered sample points span a subspace of dimension r, there are » nonzero singular values.]

[If n < d, an SVD still exists, but now U is square and V is not.]

Fact:  v; is an eigenvector of XX w/eigenvalue 61.2.
Proof: XX =VDUTUDVT = VD*V™
which is an eigendecomposition of X' X.

[The columns of V are the eigenvectors of XX, which is what we need for PCA. The SVD also tells us
their eigenvalues, which are the squares of the singular values. By the way, that’s related to why the SVD is
more numerically stable: the ratios between singular values are smaller than the ratios between eigenvalues.
If n < d, V will omit some of the eigenvectors that have eigenvalue zero, but those are useless for PCA.]



The Singular Value Decomposition; Clustering 125

Fact: We can find the k greatest singular values & corresponding vectors in O(ndk) time.
[So we can save time by computing some of the singular vectors without computing all of them.]
[There are approximate, randomized algorithms that are even faster, producing an approximate
SVD in O(nd log k) time. These are starting to become popular in algorithms for very big data.]
[ https://code.google.com/archive/p/redsvd/ ]

Important: Row i of UD gives the principle coordinates of sample point X; (i.e., ¥ j, X; - v; = 6,;U;;).
[So we don’t need to explicitly compute the inner products X; - v;; the SVD has already done it for us.]
[Proof: XV =UDVTV = UD.]

CLUSTERING

Partition data into clusters so points in a cluster are more similar than across clusters.
Why?

— Discovery: Find songs similar to songs you like; determine market segments

— Hierarchy: Find good taxonomy of species from genes

— Quantization: Compress a data set by reducing choices

— Graph partitioning: Image segmentation; find groups in social networks

Barry Zito

150

100

50

<
Q.
@« o
X
[&)
3]
m
3
|
8 <
T @
150 P
ke
3 : : : : : = N ) @
' 60 65 70 75 80 85 9
Start Speed
4-Seam Fastball 2-Seam Fastball Changeup Slider Curveball
Black Red Blue Light Blue

zito.pdf (from a talk by Michael Pane) | [k-means clusters that classify Barry Zito’s base-
ball pitches. Here we discover that there really are distinct classes of baseball pitches.]




126 Jonathan Richard Shewchuk

k-Means Clustering aka Lloyd’s Algorithm (Stuart Lloyd, 1957)

Goal: Partition n points into k disjoint clusters.
Assign each input point X; a cluster label y; € [1, k].
Cluster i’s mean is y; = nl 2.y;=i Xj» given n; points in cluster i.

k . .
Find y that minimizes Z Z “ X; - ,Ui| '2 [Su'm of the squared distances from points to
their cluster means.]

i=1 y;=i

NP-hard. Solvable in O(nk™) time. [Try every partition.]

k-means heuristic:  Alternate between
(1) y;’s are fixed; update y;’s
(2) ui’s are fixed; update y;’s
Halt when step (2) changes no assignments.

[So, we have an assignment of points to clusters. We compute the cluster means. Then we reconsider the
assignment. A point might change clusters if some other’s cluster’s mean is closer than its own cluster’s
mean. Then repeat.]

Step (1):  One can show (calculus) the optimal y; is the mean of the points in cluster i.
[This is easy calculus, so I leave it as a short exercise.]
Step (2):  The optimal y assigns each point X to the closest center u;.
[This should be even more obvious than step (1).]
[If there’s a tie, and one of the choices is for X to stay in the
same cluster as the previous iteration, always take that choice.]

Step 1 Step 2 Step 3

[

[An example of 2-means. Odd-numbered steps reassign the data points.
Even-numbered steps compute new means.



The Singular Value Decomposition; Clustering 127

K Means Clustering

4meansanimation.gif | [This is an animated GIF of 4-means with many points. Unfortu-
nately, the animation doesn’t work in the PDF lecture notes.]

Both steps decrease objective fn unless they change nothing.

[Therefore, the algorithm never returns to a previous assignment.]

Hence alg. must terminate. [As there are only finitely many assignments. ]

[This argument says that Lloyd’s algorithm never loops forever. But it doesn’t say anything optimistic about
the running time, because we might see O(k") different assignments before we halt. In theory, one can
actually construct point sets in the plane that take an exponential number of iterations, but those don’t come
up in practice.]

Usually very fast in practice. Finds a local minimum, often not global.

[. .. which is not surprising, as this problem is NP-hard.]

o Weowe T 3 >
Wy e L v * oos® 0
+ + *
22 9 sy, + EFY » #82, »
¥ i Tae * L te 4, 0
é K ; o f E

“ " DI s o % “ .

4meansbad.png | [An example where 4-means clustering fails.]

Getting started:
— Forgy method: choose k random sample points to be initial y;’s; go to (2).
— Random partition: randomly assign each sample point to a cluster; go to (1).
— k-means++: like Forgy, but biased distribution. [Each center is chosen with a preference for points
far from previous centers.]

[k-means++ is a little more work, but it works well in practice and theory. Forgy seems to be better than
random partition, but Wikipedia mentions some variants of k-means for which random partition is better.]



128

Jonathan Richard Shewchuk

For best results, run k-means multiple times with random starts.

320.9 235.8 235.8
o® o® o®
°
o °® P e ® o °®
‘......Q.: '...i..q.: 0......%':
® o o .‘ ® 0o 0o [J ® o o .‘ o
o0 © b4 00 ® o0 © ()
° o L4 ° ° ° ° ° ° ° °
° ° °
° °e . oo R ° °e
. Bl R JRR N . Bl
.o°s.‘ o0 :’ .o.‘.‘ Se :’ .Q‘.“ Se ..'
ORI St ORI
'R ° %ee s 0N ° %ee s 0% ° %oee ’
e oge® o0 e o pe® 00 F4 P oo
o % ° ° % ° ° ‘} °
235.8 235.8 310.9
® o® o®
°
‘0 ° ° ® .. ® e ® .. ® 'X]
‘0%?“ .f €000 o ‘¢ ® 000 “?;r
‘:‘O‘Q o ° :.o.. N ° O..oﬂ o
° ° ° ° ° © ° ° °
° °
o« ®o o« e .« °o
° ﬂc. [ ] ° ﬁ‘. [ ] ° ﬂc. [ ]
.05.‘ :. :o .‘os.‘ :, :o .os.‘ :. :o
ot e N ORIV
A X o 00 8 N ° o A Y o oo °
& o @ 00 K4 o e® o000 K4 o pe® 00
° 5 ° ° ':o ° ° °} °

‘ kmeans6times.pdf (ISL, Figure 10.7) ‘ [Clusters found by running 3-means 6 times on the

same sample points, each time starting with a different random partition. The algorithm

finds three different local minima.]

[Why did we choose that particular objective function to minimize? Partly because it is equivalent to mini-
mizing the following function.]

Equivalent objective fn: the within-cluster variation

k
Find y that minimizes Z nl Z Z ||X = Xm”2

i=1

Lyt ym=i

[At the minimizer, this objective function is equal to twice the previous one. It’s a worthwhile exercise to
show that—it’s harder than it looks. The nice thing about this expression is that it doesn’t include the means;
it’s a function purely of the input points and the clusters we assign them to. So it’s more convincing.]

Normalize the data?

[If some features are much larger than others, they will tend to dominate the Euclidean distance. So if you
have features in different units of measurement, you probably should normalize them. If you have features

[before applying k-means]
Same advice as for PCA. Sometimes yes, sometimes no.

in the same unit of measurement, you usually shouldn’t, but it depends on context.]




The Singular Value Decomposition; Clustering 129

k-Medoids Clustering

Generalizes k-means beyond Euclidean distance. [Means aren’t optimal for other distance metrics.]
Specify a distance fn d(x, y) between points x, y, aka dissimilarity.

Can be arbitrary; ideally satisfies triangle inequality d(x, y) < d(x, z) + d(z, ).

[Sometimes people use the £; norm or the £, norm. Sometimes people specify a matrix of pairwise distances
between the input points. ]

[Suppose you have a database that tells you how many of each product each customer bought. You’d like
to cluster together customers who buy similar products for market analysis. But if you cluster customers by
Euclidean distance, you’ll get a big cluster of all the customers who have only ever bought one thing. So
Euclidean distance is not a good measure of dissimilarity. Instead, it makes more sense to treat each customer
as a vector and measure the angle between two customers. If there’s a large angle between customers, they're
dissimilar. |

Replace mean with medoid, the sample point that minimizes total distance to other points in same cluster.
[So the medoid of a cluster is always one of the input points.]

[One difficulty with k-means is that you have to choose the number & of clusters before you start, and there
isn’t any reliable way to guess how many clusters will best fit the data. The next method, hierarchical
clustering, has the advantage in that respect. By the way, there is a whole Wikipedia article on “Determining
the number of clusters in a data set.”’]

Hierarchical Clustering

Creates a tree; every subtree is a cluster.
[So some clusters contain smaller clusters.]

Bottom-up, aka agglomerative clustering:
start with each point a cluster; repeatedly fuse pairs.

Top-down, aka divisive clustering:
start with all pts in one cluster; repeatedly split it.

[When the input is a point set, agglomerative clustering is used much more in practice than divisive cluster-
ing. But when the input is a graph, it’s the other way around: divisive clustering is more common.]

‘We need a distance fn for clusters A, B:

complete linkage: d(A, B) = max{d(w,x) :w € A, x € B}

single linkage: d(A,B) = min{d(w, x) : we€ A, x € B}

average linkage:  d(A,B) = m > wed 2xep AW, x)

centroid linkage:  d(A, B) = d(ua, up) where pg is mean of §

[The first three of these linkages work for any distance function, even if the input is just a matrix of distances
between all pairs of points. The centroid linkage only really makes sense if we’re using the Euclidean
distance. But there’s a variation of the centroid linkage that uses the medoids instead of the means, and
medoids are defined for any distance function. Moreover, medoids are more robust to outliers than means.]

Greedy agglomerative alg.:
Repeatedly fuse the two clusters that minimize d(A, B)
Naively takes O(n?) time.



130 Jonathan Richard Shewchuk

[But for complete and single linkage, there are more sophisticated algorithms called CLINK and SLINK,
which run in O(n?) time. A package called ELKI has publicly available implementations.]

Dendrogram: Illustration of the cluster hierarchy (tree) in which the vertical axis encodes all the linkage
distances.

10
1
10
|
10
1

© - © -
< — — <+ - — —
N ~
o o

‘ dendrogram.pdf (ISL, Figure 10.9) ‘ [Example of a dendrogram cut into 1, 2, or 3 clusters.]

Cut dendrogram into clusters by horizontal line according to your choice of # of clusters OR intercluster
distance.

[It’s important to be aware that the horizontal axis of a dendrogram has no meaning. You could swap some
treenode’s left subtree and right subtree and it would still be the same dendrogram. It doesn’t mean anything
that two leaves happen to be next to each other.]



The Singular Value Decomposition; Clustering 131

Average Linkage Complete Linkage Single Linkage

H

llinkages.pdf (ISL, Figure 10.12)‘ [Comparison of average, complete (max), and single
(min) linkages. Observe that the complete linkage gives the best-balanced dendrogram,
whereas the single linkage gives a very unbalanced dendrogram that is sensitive to outliers
(especially near the top of the dendrogram).]

[Probably the worst of these is the single linkage, because it’s very sensitive to outliers. Notice that if you
cut this example into three clusters, two of them have only one sample point. It also tends to give you a very
unbalanced tree.]

[The complete linkage tends to be the best balanced, because when a cluster gets large, the furthest point in
the cluster is always far away. So large clusters are more resistant to growth than small ones. If balanced
clusters are your goal, this is your best choice.]

[In most applications you probably want the average or complete linkage.]

Warning: centroid linkage can cause inversions where a parent cluster is fused at a lower height than its
children.

[So statisticians don’t like it, but nevertheless, centroid linkage is popular in genomics.]

[As a final note, all the clustering algorithms we’ve studied so far are unstable, in the sense that deleting a
few input points can sometimes give you very different results. But these unstable heuristics are still the most
commonly used clustering algorithms. And it’s not clear to me whether a truly stable clustering algorithm
is even possible.]



