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REGRESSION aka Fitting Curves to Data

Classification: given point x, predict class (often binary)
Regression: given point x, predict a numerical value
[Classification gives a discrete prediction, whereas regression gives us a quantitative prediction, usually on
a continuous scale.]
[We’ve already seen an example of regression in Gaussian discriminant analysis. QDA and LDA don’t just
give us a classifier; they also give us the probability that a particular class label is correct. So QDA and LDA
implicitly do regression on probability values.]

– Choose form of regression fn h(x; p) with parameters p (h = hypothesis)
– like decision fn in classification [e.g., linear, quadratic, logistic in x]

– Choose a cost fn (objective fn) to optimize
– usually based on a loss fn; e.g., risk fn = expected loss

Some regression fns:
(1) linear: h(x; w,↵) = w · x + ↵
(2) polynomial [equivalent to linear regression with added polynomial features]
(3) logistic: h(x; w,↵) = s(w · x + ↵) recall: logistic fn s(�) = 1

1+e��
[The last choice is interesting. You’ll recall that LDA produces a posterior probability function with this
expression. So the logistic function seems to be a natural form for modeling certain probabilities. If we want
to model posterior probabilities, sometimes we use LDA; but alternatively, we could skip fitting Gaussians
to points, and instead just try to directly fit a logistic function to a set of probabilities.]

Some loss fns: let z be prediction h(x); y be true label
(A) L(z, y) = (z � y)2 squared error
(B) L(z, y) = |z � y| absolute error
(C) L(z, y) = �y ln z � (1 � y) ln(1 � z) logistic loss, aka cross-entropy: y 2 [0, 1], z 2 (0, 1)

Some cost fns to minimize:
(a) J(h) = 1

n
Pn

i=1 L(h(Xi), yi) mean loss [you can leave out the “ 1
n ”]

(b) J(h) = maxn
i=1 L(h(Xi), yi) maximum loss

(c) J(h) =
Pn

i=1 !i L(h(Xi), yi) weighted sum [some points are more important than others]
(d) J(h) = (a), (b), or (c) +�kwk2 `2 penalized/regularized
(e) J(h) = (a), (b), or (c) +�kwk`1 `1 penalized/regularized

Some famous regression methods:
Least-squares linear regr.: (1) + (A) + (a)
Weighted least-squ. linear: (1) + (A) + (c)
Ridge regression: (1) + (A) + (d)
Lasso: (1) + (A) + (e)
Logistic regr.: (3) + (C) + (a)
Least absolute deviations: (1) + (B) + (a)
Chebyshev criterion: (1) + (B) + (b)

9>>=
>>; quadratic cost; minimize w/calculus

quadratic program
convex cost; minimize w/gradient descent�
linear program

[I have given you several choices of regression function form, several choices of loss function, and several
choices of objective function. These are interchangeable parts where you can snap one part out and replace
it with a di↵erent one. But the optimization algorithm and its speed depend crucially on which parts you
pick. Let’s consider some examples.]
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LEAST-SQUARES LINEAR REGRESSION (Gauss, 1801)

Linear regression fn (1) + squared loss fn (A) + cost fn (a).

Find w,↵ that minimizes
nX

i=1

(Xi · w + ↵ � yi)2
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linregress.pdf (ISL, Figure 3.4) [An example of linear regression.]

Convention: X is n ⇥ d design matrix of sample pts
y is n-vector of scalar labels
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" "
feature column X⇤ j y

Usually n > d. [But not always.]

Recall fictitious dimension trick [from Lecture 3]: rewrite h(x) = x · w + ↵ as

[x1 x2 1] ·

2
666666664

w1
w2
↵

3
777777775 .

Now X is an n ⇥ (d + 1) matrix; w is a (d + 1)-vector. [We’ve added a column of all-1’s to the end of X.]
[We rewrite the optimization problem above:]

Find w that minimizes kXw � yk2 = RSS(w), for residual sum of squares
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Optimize by calculus:

minimize RSS(w) = w>X>Xw � 2y>Xw + y>y
r RSS = 2X>Xw � 2X>y = 0

) X>X|{z}
(d+1)⇥(d+1)

w = X>y|    {z    }
(d+1)�vectors

( the normal equations [w unknown; X & y known]

If X>X is singular, problem is underconstrained
[because the sample points all lie on a common hyperplane. Notice that X>X is always positive semidefinite.]

We use a linear solver to find w = (X>X)�1X>|        {z        }
X+, the pseudoinverse of X, (d+1)⇥n

y [never actually invert the matrix!]

[We never compute X+ directly, but we are interested in the fact that w is a linear transformation of y.]
[X is usually not square, so X can’t have an inverse. However, every X has a pseudoinverse X+, and if X>X
is invertible, then X+ is a “left inverse.”]

Observe: X+X = (X>X)�1X>X = I ( (d + 1) ⇥ (d + 1) [which explains the name “left inverse”]

Observe: the predicted values of y are ŷi = w · Xi ) ŷ = Xw = XX+y = Hy
where H|{z}

n⇥n

= XX+ is called the hat matrix because it puts the hat on y

[Ideally, H would be the identity matrix and we’d have a perfect fit, but if n > d + 1, then H is singular.]

Advantages:
– Easy to compute; just solve a linear system.
– Unique, stable solution. [. . . except when the problem is underconstrained.]

Disadvantages:
– Very sensitive to outliers, because errors are squared!
– Fails if X>X is singular. [Which means the problem is underconstrained, has multiple solutions.]

[In discussion section 6, we’ll address how to handle the underconstrained case where X>X is singular.]

[Apparently, least-squares linear regression was first posed and solved in 1801 by the great mathematician
Carl Friedrich Gauss, who used least-squares regression to predict the trajectory of the planetoid Ceres.
A paper he wrote on the topic is regarded as the birth of modern linear algebra.]

LOGISTIC REGRESSION (David Cox, 1958)

Logistic regression fn (3) + logistic loss fn (C) + cost fn (a).
Fits “probabilities” in range (0, 1).

Usually used for classification. The input yi’s can be probabilities,
but in most applications they’re all 0 or 1.

QDA, LDA: generative models
logistic regression: discriminative model
[We’ve learned from LDA that in classification, the posterior probabilities are often modeled well by a
logistic function. So why not just try to fit a logistic function directly to the data, skipping the Gaussians?]
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With X and w including the fictitious dimension; ↵ is w’s last component . . .
Find w that minimizes

J =
nX

i=1

L(Xi · w, yi) = �
nX

i=1

0
BBBB@yi ln s(Xi · w) + (1 � yi) ln (1 � s(Xi · w))
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logloss0.pdf, loglosspt7.pdf [Plots of the loss L(z, y) for y = 0 (left) and y = 0.7 (right). As
you might guess, the left function is minimized at z = 0, and the right function is minimized
at z = 0.7. These loss functions are always convex.]

J(w) is convex! Solve by gradient descent.
[To do gradient descent, we’ll need to compute some derivatives.]

s0(�) =
d

d�
1
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logistic.pdf, dlogistic.pdf [Plots of s(�) (left) and s0(�) (right).]

Let si = s(Xi · w)

rw J = �
X 

yi

si
rsi �

1 � yi

1 � si
rsi

!

= �
X 

yi

si
� 1 � yi

1 � si

!
si(1 � si) Xi

= �
X

(yi � si) Xi

= �X>(y � s(Xw)) where s(Xw) =

2
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sn
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7777777777777775

[applies s component-wise to Xw]
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Gradient descent rule: w w + ✏ X>(y � s(Xw))

Stochastic gradient descent: w w + ✏ (yi � s(Xi · w)) Xi
Works best if we shu✏e points in random order, process one by one.
For very large n, sometimes converges before we visit all points!

[This looks a lot like the perceptron learning rule. The only di↵erence is that the “�si” part is new.]

Starting from w = 0 works well in practice.

problogistic.png, by “mwascom” of Stack Overflow

http://stackoverflow.com/questions/28256058/plotting-decision-boundary-of-logistic-regression
[An example of logistic regression.]

If sample pts are linearly separable and w · x = 0 separates them (with decision boundary touching no pt),
scaling w to have infinite length causes s(Xi ·w)! 1 for a pt i in class C, s(Xi ·w)! 0 for a pt not in class C,
and J(w)! 0 [in the limit as kwk ! 1].

[Moreover, this is the only way to get the cost function J to approach zero.]

Therefore, logistic regression always separates linearly separable pts!

[In this case, the cost function J(w) has no finite local minimum, but gradient descent will “converge” to a
solution, in the sense that the cost J will get arbitrarily close to zero, though of course the weight vector w
will never become infinitely long.]

[A 2018 paper by Soudry, Ho↵er, Nacson, Gunasekar, and Srebro shows that gradient descent applied to
logistic regression eventually converges to the maximum margin classifier, but the convergence is very, very
slow. In practice, logistic regression will usually find a linear separator reasonably quickly, but it’s not a
practical algorithm for maximizing the margin in a reasonable amount of time.]


