
Perceptron Learning; Maximum Margin Classifiers 13

3 Perceptron Learning; Maximum Margin Classifiers

Perceptron Algorithm (cont’d)

Recall:
– linear decision fn f (x) = w · x (for simplicity, no ↵)
– decision boundary {x : f (x) = 0} (a hyperplane through the origin)
– sample points X1, X2, . . . , Xn 2 Rd; class labels y1, . . . , yn = ±1
– goal: find weights w such that yiXi · w � 0
– goal, revised: find w that minimizes R(w) =

P
i2V �yiXi · w [risk function]

where V is the set of indices i for which yiXi · w < 0.

[Our original problem was to find a separating hyperplane in one space, which I’ll call x-space. But we’ve
transformed this into a problem of finding an optimal point in a di↵erent space, which I’ll call w-space. It’s
important to understand transformations like this, where a geometric structure in one space becomes a point
in another space.]

Objects in x-space transform to objects in w-space:

x-space w-space
hyperplane: {z : w · z = 0} point: w
point: x hyperplane: {z : x · z = 0}

Point x lies on hyperplane {z : w · z = 0}, w · x = 0, point w lies on hyperplane {z : x · z = 0} in w-space.

[So a hyperplane transforms to its normal vector. And a sample point transforms to the hyperplane whose
normal vector is the sample point.]

[In this algorithm, the transformations happen to be symmetric: a hyperplane in x-space transforms to a
point in w-space the same way that a hyperplane in w-space transforms to a point in x-space. That won’t
always be true for the decision boundaries we use this semester.]

If we want to enforce inequality x · w � 0, that means
– in x-space, x should be on the same side of {z : w · z = 0} as w
– in w-space, w ” ” ” ” ” ” ” {z : x · z = 0} as x

C

X

X

x-space w-space

w w

[Draw this by hand. xwspace.pdf]
[Observe that the x-space sample
points are the normal vectors for the
w-space lines. We can choose w to be
anywhere in the shaded region.]

[For a sample point x in class C, w and x must be on the same side of the hyperplane that x transforms into.
For a point x not in class C (marked by an X), w and x must be on opposite sides of the hyperplane that x
transforms into. These rules determine the shaded region above, in which w must lie.]

[Again, what have we accomplished? We have switched from the problem of finding a hyperplane in x-
space to the problem of finding a point in w-space. That’s a better fit to how we think about optimization
algorithms.]

14 Jonathan Richard Shewchuk

[Let’s take a look at the risk function these three sample points create.]

-4 -2 0 2 4

-4

-2

0

2

4

riskplot.pdf, riskiso.pdf [Plot & isocontours of risk R(w). Note how R’s creases match the
lines in the w-space drawn above.]

[In this plot, we can choose w to be any point in the bottom pizza slice; all those points minimize R.]

[We have an optimization problem; we need an optimization algorithm to solve it.]

An optimization algorithm: gradient descent on R.

[Draw the typical steps of gradient descent on the plot of R.]

Given a starting point w, find gradient of R with respect to w; this is the direction of steepest ascent.
Take a step in the opposite direction. Recall [from your vector calculus class]

rR(w) =

2
666666666666666664

@R
@w1
@R
@w2
...
@R
@wd

3
777777777777777775

and rw(z · w) =

2
6666666666666664

z1
z2
...

zd

3
7777777777777775
= z

rR(w) =
X

i2V
r � yiXi · w = �

X

i2V
yiXi

At any point w, we walk downhill in direction of steepest descent, �rR(w).

w arbitrary nonzero starting point (good choice is any yiXi)
while R(w) > 0

V set of indices i for which yiXi · w < 0
w w + ✏

P
i2V yiXi

return w

✏ > 0 is the step size aka learning rate, chosen empirically. [Best choice depends on input problem!]

Problem: Slow! Each step takes O(nd) time. [Can we improve this?]

Perceptron Learning; Maximum Margin Classifiers 15

Optimization algorithm 2: stochastic gradient descent

Idea: each step, pick one misclassified Xi;
do gradient descent on loss fn L(Xi · w, yi).

Called the perceptron algorithm. Each step takes O(d) time.
[Not counting the time to search for a misclassified Xi.]

while some yiXi · w < 0
w w + ✏ yiXi

return w

[Stochastic gradient descent is quite popular and we’ll see it several times more this semester, especially
for neural nets. However, stochastic gradient descent does not work for every problem that gradient descent
works for. The perceptron risk function happens to have special properties that guarantee that stochastic
gradient descent will always succeed.]

What if separating hyperplane doesn’t pass through origin?
Add a fictitious dimension. Decision fn is

f (x) = w · x + ↵ = [w1 w2 ↵] ·

2
666666664

x1
x2
1

3
777777775

Now we have sample points in Rd+1, all lying on hyperplane xd+1 = 1.

Run perceptron algorithm in (d + 1)-dimensional space. [We are simulating a general hyperplane in
d dimensions by using a hyperplane through the origin in d + 1 dimensions.]

[The perceptron algorithm was invented in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory.
It was originally designed not to be a program, but to be implemented in hardware for image recognition on
a 20 ⇥ 20 pixel image. Rosenblatt built a Mark I Perceptron Machine that ran the algorithm, complete with
electric motors to do weight updates.]

Mark I perceptron.jpg (from Wikipedia, “Perceptron”) [The Mark I Perceptron Machine.
This is what it took to process a 20 ⇥ 20 image in 1957.]

16 Jonathan Richard Shewchuk

[Then he held a press conference where he predicted that perceptrons would be “the embryo of an electronic
computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of
its existence.” We’re still waiting on that.]

[One interesting aspect of the perceptron algorithm is that it’s an “online algorithm,” which means that if
new data points come in while the algorithm is already running, you can just throw them into the mix and
keep looping.]

[Perceptron Convergence Theorem: If data is linearly separable, perceptron algorithm will find a linear
classifier that classifies all data correctly in at most O(r2/�2) iterations, where r = max kXik is “radius of
data” and � is the “maximum margin.”]
[I’ll define “maximum margin” shortly.]

[We’re not going to prove this, because perceptrons are obsolete.]

[Although the step size/learning rate doesn’t appear in that big-O expression, it does have an e↵ect on the
running time, but the e↵ect is hard to characterize. The algorithm gets slower if ✏ is too small because it has
to take lots of steps to get down the hill. But it also gets slower if ✏ is too big for a di↵erent reason: it jumps
right over the region with zero risk and oscillates back and forth for a long time.]

[Although stochastic gradient descent is faster for this problem than gradient descent, the perceptron algo-
rithm is still slow. There’s no reliable way to choose a good step size ✏. Fortunately, optimization algorithms
have improved a lot since 1957. You can get rid of the step size by using a decent modern “line search” al-
gorithm. Better yet, you can find a better decision boundary much more quickly by quadratic programming,
which is what we’ll talk about next.]

MAXIMUM MARGIN CLASSIFIERS

The margin of a linear classifier is the distance from the decision boundary to the nearest sample point.
What if we make the margin as wide as possible?

CX

X

X

X

X

X

C

C

CC

C

w · x + ↵ = 1
w · x + ↵ = 0w · x + ↵ = �1 [Draw this by hand. maxmargin.pdf]

We enforce the constraints

yi (w · Xi + ↵) � 1 for i 2 [1, n]

[Notice that the right-hand side is a 1, rather than a 0 as it was for the perceptron algorithm. It’s not obvious,
but this a better way to formulate the problem, partly because it makes it impossible for the weight vector w
to get set to zero.]

Perceptron Learning; Maximum Margin Classifiers 17

Recall: if kwk = 1, signed distance from hyperplane to Xi is w · Xi + ↵.
Otherwise, it’s w

kwk · Xi +
↵
kwk . [We’ve normalized the expression to get a unit weight vector.]

Hence the margin is mini
1
kwk |w · Xi + ↵|| {z }

�1

� 1
kwk . [We get the inequality by substituting the constraints.]

To maximize the margin, minimize kwk. Optimization problem:
Find w and ↵ that minimize kwk2
subject to yi(Xi · w + ↵) � 1 for all i 2 [1, n]

Called a quadratic program in d + 1 dimensions and n constraints.
It has one unique solution! [If the points are linearly separable; otherwise, it has no solution.]

[A reason we use kwk2 as an objective function, instead of kwk, is that the length function kwk is not smooth
at w = 0, whereas kwk2 is smooth everywhere. This makes optimization easier.]

The solution gives us a maximum margin classifier, aka a hard-margin support vector machine (SVM).

[Technically, this isn’t really a support vector machine yet; it doesn’t fully deserve that name until we add
features and kernels, which we’ll study in later lectures.]

At the optimal solution, the margin is exactly 1
kwk . [Because at least one constraint holds with equality.]

There is a slab of width 2
kwk containing no sample points [with the hyperplane running along its middle].

[Let’s see what these constraints look like in weight space.]

-1.0 -0.8 -0.6 -0.4 -0.2
w2

-1.0

-0.5

0.5

1.0
alpha

weight3d.pdf, weightcross.pdf [This is an example of what the linear constraints look like
in the 3D weight space (w1,w2,↵) for the SVM we’ve been studying with three training
points. The SVM is looking for the point nearest the origin that lies above the blue plane
(representing an in-class training point) but below the red and pink planes (representing
out-of-class training points). In this example, that optimal point lies where the three planes
intersect. At right we see a 2D cross section w1 = 1/17 of the 3D space, because the
optimal solution lies in this cross section. The constraints say that the solution must lie
in the leftmost pizza slice, while being as close to the origin as possible, so the optimal
solution is where the three lines meet.]

[Like the perceptron algorithm, a hard-margin SVM works only with linearly separable point sets. We’ll fix
that in the next lecture.]

