
CS 189 Introduction to Machine Learning
Spring 2021 Jonathan Shewchuk HW7
Due: Thursday, May 6 at 11:59 pm

Deliverables:

1. Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope as-
signment entitled “Homework 7 Write-Up”. In addition, please include, as your solutions to each
coding problem, the specific subset of code relevant to that part of the problem. You may typeset your
homework in LaTeX or Word (submit PDF format, not .doc/.docx format) or submit neatly handwrit-
ten and scanned solutions. Please start each question on a new page. If there are graphs, include
those graphs in the correct sections. Do not put them in an appendix. We need each solution to be
self-contained on pages of its own.

• In your write-up, please state with whom you worked on the homework.

• In your write-up, please copy the following statement and sign your signature next to it. (Mac
Preview and FoxIt PDF Reader, among others, have tools to let you sign a PDF file.) We want
to make it extra clear so that no one inadvertently cheats.
“I certify that all solutions are entirely in my own words and that I have not looked at another
student’s solutions. I have given credit to all external sources I consulted.”

2. Submit all the code needed to reproduce your results to the Gradescope assignment entitled “Home-
work 7 Code”. Yes, you must submit your code twice: once in your PDF write-up following the
directions as described above so the readers can easily read it, and once in compilable/interpretable
form so the readers can easily run it. Do NOT include any data files we provided. Please include a
short file named README listing your name, student ID, and instructions on how to reproduce your
results. Please take care that your code doesn’t take up inordinate amounts of time or memory to run.
If your code cannot be executed, your solution cannot be verified.
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1 Movie Recommender System
In this problem, we will build a personalized movie recommender system! Suppose that there are m = 100
movies and n = 24,983 users in total, and each user has watched and rated a subset of the m movies. Our
goal is to recommend more movies for each user given their preferences.

Our historical ratings dataset is given by a matrix R ∈ Rn×m, where Ri j represents the rating that user i gave
movie j. The rating is a real number in the range [−10, 10]: a higher value indicates that the user was more
satisfied with that movie. If user i did not rate movie j, Ri j = NaN.

The provided movie data/ directory contains the following files:

• movie train.mat contains the training data, i.e. the matrix R of historical ratings specified above.

• movie validate.txt contains user-movie pairs that don’t appear in the training set (i.e. Ri j = NaN).
Each line takes the form “i, j, s”, where i is the user index, j is the movie index, and s indicates the
user’s rating of the movie. Contrary to the training set, the rating here is binary: if the user liked the
movie (positive rating), s = 1, and if the user did not like the movie (negative rating), s = −1.

We also provide movie recommender.py, containing starter code for building your recommender system.

The Singular Value Decomposition (SVD) is a powerful tool to decompose and analyze matrices. In lecture,
we saw that the SVD can be used to efficiently compute the principal coordinates of a data matrix for PCA.
Here, we will see that SVD can also produce dense, compact featurizations of the variables in the input ma-
trix (in our case, the m movies and n users). This application of SVD is known as Latent Semantic Analysis
(Wikipedia), and we can use it to construct a Latent Factor Model (LFM) for personalized recommendation.

Specifically, we want to learn a feature vector xi ∈ R
d for user i and a feature vector y j ∈ R

d for movie j
such that the inner product xi · y j approximates the rating Ri j that user i would give movie j.

(a) Recall the SVD definition for a matrix R ∈ Rn×m from Lecture 21: R = UΣVT . Write an expression for
Ri j, user i’s rating for movie j, in terms of only the singular values and the components of U and V .

(b) Based on your answer above, what should we choose as our user and movie feature vector representa-
tions xi and y j in order to achieve 100% training accuracy (correctly predict all known ratings in R)?

(c) In the provided movie recommender.py, complete the code for part (c) by filling in the missing parts of
the function svd lfm. Start by replacing all missing (NaN) values in R with 0. Then, compute the SVD
of the resulting matrix, and follow your above derivations to compute the feature vector representations
for each user and movie. Note: do not center the data matrix; this is not PCA.

Once you are finished with the code, the rows of the user vecs array should contain the feature vectors
for users (so the ith row of user vecs is xi), and the rows of movie vecs should contain the feature
vectors for movies (so the jth row of movie vecs is y j).

Hint: we recommend using scipy.linalg.svd to compute the SVD, with full matrices = False.
This returns U (n × m), Σ (as a vector of m singular values in descending order, not a diagonal matrix),
and VT (m × m) in that order.

(d) To measure the training performance of the model, we can use the MSE loss,

MSE =
∑

(i, j)∈S

(xi · y j − Ri j)2 where S := {(i, j) : Ri j , NaN}.

Complete the code to implement the training MSE computation within the function get train mse.
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(e) Our model as constructed may achieve 100% training accuracy, but is prone to overfitting. Instead, we
would like to use lower-dimensional representations for xi and y j in order to approximate our known
ratings closely while still generalizing well to unknown user/movie combinations. Specifically, we want
each xi and y j to be d-dimensional for some d < m, such that only the top d features are used to make
predictions xi · y j. The “top d features” are those corresponding to the d largest singular values: use this
as a hint for how to prune your current user/movie vector representations to d dimensions.

In your code, compute pruned user/movie vector representations with d = 2, 5, 10, 20. Then, for
each setting, compute the training MSE (using the function you implemented in part (d)), the train-
ing accuracy (using the provided get train acc), and the validation accuracy (using the provided
get val acc). Plot the training MSE as a function of d on one plot, and the training and validation
accuracies as a function of d together on a separate plot. Make sure to label your plots, series, and axes!
Comment on which value of d leads to optimal performance.

Hint: as a sanity check, if implemented correctly, your best validation accuracy should be about 71%.

(f) For sparse data, replacing all missing values with zero, as we did in part (c), is not a very satisfying
solution. A missing value in the training matrix R means that the user has not watched the movie; this
does not imply that the rating should be zero. Instead, we can learn our user/movie vector representations
by minimizing the MSE loss, which only incorporates the loss on rated movies (Ri j , NaN).

Let’s define a loss function

L
(
{xi}, {y j}

)
=

∑
(i, j)∈S

(xi · y j − Ri j)2 +

n∑
i=1

‖xi‖
2
2 +

m∑
j=1

‖y j‖
2
2

where S has the same definition as in the MSE. This is similar to the original MSE loss, except with two
additional regularization terms to prevent the norms of the user/movie vectors from getting too large.

Implement an algorithm to learn vector representations of dimension d, the optimal value you found in
part (e), for users and movies by minimizing L({xi}, {y j}).

We suggest employing an alternating minimization scheme. First, randomly initialize xi and y j for all
i, j. Then, minimize the above loss function with respect to the xi by treating the y j as constant vectors,
and subsequently minimize the loss with respect to the y j by treating the xi as constant vectors. Repeat
these 2 steps for a number of iterations. Note that when one of the xi or y j are constant, minimizing the
loss function with respect to the other component has a closed-form solution. Derive this solution first
in your report, showing all your work.

The starter code provides a template for this algorithm. Start by inputting your best d value from part (e)
to initialize the user and movie vectors, and then implement the functions to update the user and movie
vectors (holding the other constant) to their loss-minimizing values.

• To improve efficiency, we recommend using the user rated idxs and movie rated idxs ar-
rays provided, which contain the indices of movies that each user rated and the indices of users that
rated each movie (respectively), to iterate through the non-NaN values of R in the update functions.

• Run these 2 update steps for 20 iterations. Include your final training MSE, training accuracy, and
validation accuracy on your report, and compare these results with your best results from part (e).
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2 Regularized and Kernel k-Means
Recall that in k-means clustering we attempt to minimize the objective

min
C1,C2,...,Ck

L =

k∑
i=1

∑
X j∈Ci

‖X j − µi‖
2
2, where

µi = argminµi∈Rd

∑
X j∈Ci

‖X j − µi‖
2
2 =

1
|Ci|

∑
X j∈Ci

X j, i = 1, 2, . . . , k.

The sample points are {X1, . . . , Xn}, where X j ∈ R
d. Ci is the set of sample points assigned to cluster i and

|Ci| is the cluster’s cardinality. Each sample point is assigned to exactly one cluster.

(a) What is the minimum value of the objective when k = n (the number of clusters equals the number of
sample points)?

(b) (Regularized k-means) Suppose we add a regularization term to the above objective. The regularized
k-means objective is now

min
µi∈Rd

k∑
i=1

λ‖µi‖
2
2 +

∑
X j∈Ci

‖X j − µi‖
2
2

 .
Show that the optimum of

min
µi∈Rd

λ‖µi‖
2
2 +

∑
X j∈Ci

‖X j − µi‖
2
2

is obtained at
µi =

1
|Ci| + λ

∑
X j∈Ci

X j.

(c) (Kernel k-means) Suppose we have a dataset {Xi}
n
i=1, Xi ∈ R

` that we want to split into k clusters, i.e.,
finding the best k-means clustering (without regularization). Furthermore, suppose we know a priori
that this data is best clustered in an impractically high-dimensional feature space Rm with an appropriate
metric. Fortunately, instead of having to deal with the (implicit) feature map Φ : R` → Rm and (implicit)
distance metric1, we have a kernel function κ(X1, X2) = Φ(X1) · Φ(X2) that we can compute quickly on
the raw samples. How should we perform the kernelized counterpart of k-means clustering?

Derive the missing portion of this algorithm, and show your work in deriving it. The primary issue
to consider is that although we define the means µi in the usual way, we can’t ever compute Φ explicitly
because it’s way too big. Therefore, in the step where we determine which cluster each sample point is
assigned to, we must use the kernel function κ to obtain the right result. Review the lecture on kernels

1Just as how the interpretation of kernels in kernelized ridge regression involves an implicit prior/regularizer as well as an
implicit feature space, we can think of kernels as generally inducing an implicit distance metric as well. Think of how you would
represent the squared distance between two points in terms of pairwise inner products and operations on them.
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if you don’t remember how that’s done.

Algorithm 1: Kernel k-means
Require: Data matrix X ∈ Rn×d; number of clusters K; kernel function κ(X1, X2)
Ensure: Cluster class( j) assigned for each sample point X j.

function Kernel-k-means(X,K)
Randomly initialize class( j) to be an integer in 1, 2, . . . ,K for each X j.
while not converged do

for i← 1 to K do
Set S i ← { j ∈ {1, 2, . . . , n} : class( j) = i}.

for j← 1 to n do
Set class( j)← arg mink(Action item: derive the missing portion here)

Return S i for i← 1, 2, . . . ,K.
end function

(d) The expression you derived may have unnecessary terms or redundant kernel computations, especially
when you compute class( j) for every j ∈ [1, n]. Explain how to eliminate them; that is, how to perform
the computation quickly without doing irrelevant computations or redoing computations already done.

3 The Training Error of AdaBoost
Recall that in AdaBoost, our input is an n × d design matrix X with n labels yi = ±1, and at the end of
iteration T the importance of each sample is reweighted as

w(T+1)
i = w(T )

i exp
(
−βT yi GT (Xi)

)
, where βT =

1
2

ln
(
1 − errT

errT

)
and errT =

∑
yi,GT (Xi) w(T )

i∑n
i=1 w(T )

i

.

Note that errT is the weighted error rate of the classifier GT . Recall that GT (z) is ±1 for all points z, but the
meta-learner has a non-binary decision function M(z) =

∑T
t=1 βtGt(z). To classify a test point z, we calculate

M(z) and return its sign.

In this problem we will prove that if every learner Gt achieves 51% accuracy (that is, only slightly above
random), AdaBoost will converge to zero training error. (If you get stuck on one part, move on; all five parts
below can be done without solving the other parts, and parts (c) and (e) are the easiest.)

(a) We want to change the update rule to “normalize” the weights so that each iteration’s weights sum to 1;
that is,

∑n
i=1 w(T+1)

i = 1. That way, we can treat the weights as a discrete probability distribution over
the sample points. Hence we rewrite the update rule in the form

w(T+1)
i =

w(T )
i exp

(
−βT yi GT (Xi)

)
ZT

(1)

for some scalar ZT . Show that if
∑n

i=1 w(T )
i = 1 and

∑n
i=1 w(T+1)

i = 1, then

ZT = 2
√

errT (1 − errT ). (2)

Hint: sum over both sides of (1), then split the right summation into misclassified points and correctly
classified points.
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(b) The initial weights are w(1)
1 = w(1)

2 = · · · = w(1)
n = 1

n . Show that

w(T+1)
i =

1
n
∏T

t=1 Zt
e−yi M(Xi). (3)

(c) Let B (for “bad”) be the number of sample points out of n that the meta-learner classifies incorrectly.
Show that

n∑
i=1

e−yi M(Xi) ≥ B. (4)

Hint: split the summation into misclassified points and correctly classified points.

(d) Use the formulas (2), (3), and (4) to show that if errt ≤ 0.49 for every learner Gt, then B→ 0 as T → ∞.
Hint: (2) implies that every Zt < 0.9998. How can you combine this fact with (3) and (4)?

(e) Explain why AdaBoost with short decision trees is a form of subset selection when the number of
features is large.
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