
CS 189 Introduction to Machine Learning
Spring 2021 Jonathan Shewchuk HW6
Due: Wednesday, April 21 at 11:59 pm

Deliverables:

1. Submit your predictions for the test sets to Kaggle as early as possible. Include your Kaggle scores in
your write-up (see below). The Kaggle competition for this assignment can be found at

• https://www.kaggle.com/c/spring21-cs189-hw6-cifar10

2. The written portion:

• Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope
assignment titled “Homework 6 Write-Up”. Please see section 3.3 for an easy way to gather all
your code for the submission (you are not required to use it, but we would strongly recommend
using it).

• In addition, please include, as your solutions to each coding problem, the specific subset of code
relevant to that part of the problem. Whenever we say “include code”, that means you can either
include a screenshot of your code, or typeset your code in your submission (using markdown or
LATEX).

• You may typeset your homework in LaTeX or Word (submit PDF format, not .doc/.docx format)
or submit neatly handwritten and scanned solutions. Please start each question on a new page.
• If there are graphs, include those graphs in the correct sections. Do not put them in an appendix.

We need each solution to be self-contained on pages of its own.

• In your write-up, please state with whom you worked on the homework.

• In your write-up, please copy the following statement and sign your signature next to it. (Mac
Preview and FoxIt PDF Reader, among others, have tools to let you sign a PDF file.) We want
to make it extra clear so that no one inadvertently cheats.
“I certify that all solutions are entirely in my own words and that I have not looked at another
student’s solutions. I have given credit to all external sources I consulted.”

3. Submit all the code needed to reproduce your results to the Gradescope assignment entitled “Home-
work 6 Code”. Yes, you must submit your code twice: in your PDF write-up following the directions
as described above so the readers can easily read it, and once in compilable/interpretable form so the
readers can easily run it. Do NOT include any data files we provided. Please include a short file
named README listing your name, student ID, and instructions on how to reproduce your results.
Please take care that your code doesn’t take up inordinate amounts of time or memory. If your code
cannot be executed, your solution cannot be verified.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 1

https://www.kaggle.com/c/spring21-cs189-hw6-cifar10

1 Honor Code
Declare and sign the following statement:

“I certify that all solutions in this document are entirely my own and that I have not looked at anyone else’s
solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your) creation. Fur-
thermore, all external material (i.e., anything outside lectures and assigned readings, including figures and
pictures) should be cited properly. We wish to remind you that consequences of academic misconduct are
particularly severe!

2 Background
This section will provide a background on neural-networks that is designed to help you complete the assign-
ment. There are no questions in this part. The questions for the homework begin in section 4.

2.1 Neural Networks
Many of the most exciting recent breakthroughs in machine learning have come from “deep” (read: many-
layer) neural networks, such as the deep reinforcement learning algorithm that learned to play Atari from
pixels, or the GPT-2 model, which generates text that is nearly indistinguishable from human-generated text.

Neural network libraries such as Tensorflow and PyTorch have made training complicated neural network
architectures very easy. However, we want to emphasize that neural networks begin with fundamentally
simple models that are just a few steps removed from basic logistic regression. In this assignment, you will
build two fundamental types of neural network models, all in plain numpy: a feed-forward fully-connected
network, and a convolutional neural network. We will start with the essential elements and then build up
in complexity.

A neural network model is defined by the following.

• An architecture defining the flow of information between computational layers. This defines the
composition of functions that the network performs from input to output.

• A cost function (e.g. cross-entropy or mean squared error).

• An optimization algorithm (e.g. stochastic gradient descent with backpropagation).

• A set of hyperparameters (e.g. learning rate, batch size, etc.).

Each layer is defined by the following components.

• A parameterized function that defines the layer’s map from input to output (e.g. f (x) = σ(Wx + b)).

• An activation function σ (e.g. ReLU, sigmoid, etc.).

• A set of parameters (e.g. weights and biases).

Neural networks are commonly used for supervised learning problems, where we have a set of inputs and a
set of labels, and we want to learn the function that maps inputs to labels. To learn this function, we need

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 2

https://deepmind.com/research/publications/playing-atari-deep-reinforcement-learning
https://openai.com/blog/better-language-models/

to update the parameters of the network (the weights and biases). We do this using mini-batch gradient
descent. In order to compute the gradients for gradient descent, we will use a dynamic programming
algorithm called backpropagation.

In the backpropagation algorithm, we first compute what is called a “forward pass” of the network. In the
forward pass, we send a mini-batch of input data (e.g. 50 datapoints) through the network. The result is a
set of outputs, which we use to compute our loss function. We then take the derivatives of this loss with
respect to the parameters of each layer, starting with the output of the network and using the chain rule to
propagate backwards through the layers. This is called the “backward pass.” During the backward pass we
compute the derivatives of the loss function with respect to each of the model parameters, starting from the
last layer and “propagating” the information from the loss function backwards through the network. This lets
us calculate derivatives with respect to all the parameters of our network while letting us avoid computing
the same derivatives multiple times.

To summarize, training a neural network involves three steps.

1. Forward propagation of inputs.

2. Computing the cost.

3. Backpropagation and parameter updates.

2.2 Batching
When Building neural networks, we have to carefully consider the data. In homework 4, you coded both
batch gradient descent and stochastic gradient descent for logistic regression. For the stochastic version,
where only a single data point was used, the form of derivatives used in gradient descent were different than
those of batch gradient descent. Neural-networks always operate on mini-batches, or subsets of the data
matrix. This is because operating on all the data at once would be impossible given current compute and
actually bad for optimization, while operating on a single data point would be far too noisy. Thus, every
step of your neural network must be defined to operate on batches of data. For example, the input to a fully
connected neural network would be a matrix of shape (B, d) where B is the batch size and d is the number
of features. The input to a convolutional neural network would be a tensor of shape (B,H,W,C) where B is
the batch size, H is the height of the image, W is the width of the image, and C is the number of channels in
the image (3 for RGB).

Because you are writing the gradient descent algorithm to work on mini-batches, all of your derivations must
work for mini-batches as well. This is important to keep in mind as you complete this assignment, and many
of the derivations may be different than those you have seen in class. Thinking in terms of mini-batches
often changes the shapes and operations you do. Your derivations must be for mini-batches and cannot
use for loops to iterate over individual data points. This is one aspect of the assignemnt that students
often find to be very difficult.

2.3 Feed-Forward, Fully-Connected Neural Networks
A feed-forward, fully-connected neural network layer performs an affine transformation of an input, fol-
lowed by a nonlinear activation function. We will use the following notation when defining fully-connected
layers, with superscripts surrounded by brackets indexing layers and subscripts indexing the vector/matrix
elements.

• x: A single data vector, of shape 1 × d, where d is the number of features.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 3

https://en.wikipedia.org/wiki/Affine_transformation

̂y

W[0] W[1] W[2]

b[0] b[1] b[2]
h[0] h[1]x

Figure 1: A 3-layer fully-connected neural network.

d

∑
i=0

xiW[0]
ij + b[0]

j
σ[0](⋅)

W0,j

b[0]
j

h[0]
j

x1 W1,j

W2,j

x0

x2

Figure 2: A single fully-connected neuron.

• y: A single label vector, of shape 1× k, where k is the number of classes (for a classification problem),
or the number of output features (for a regression problem).

• n[l]: The number of neurons in layer l.

• W[l]: A matrix of weights connecting layer l − 1 with layer l, of shape n[l−1] × n[l]. At layer 0, it is
shape d × n[l].

• b[l]: The bias vector for layer l, of shape 1 × n[l].

• h[l]: The output of layer l. This is a vector of shape 1 × n[i].

• σ[l](·): The nonlinear “activation function” applied at layer l.

A fully-connected layer l is a function

φ[l](h[l−1]) = σ[l](h[l−1]W[l] + b[l]) = h[l].

At layer 0, h[l−1] is simply the data vector x. We will use the term z[l] = h[l−1]W [l] + b[l] as shorthand for the
intermediate result within layer l before applying the activation function σ. Each layer is computed sequen-
tially and the output of one layer is used as the input to the next. A neural network is thus a composition
of functions. We want to find the parameters of the function that takes us from our input examples x to our
labels y.

When used for classifiation, feed forward networks accept inputs as d-dimensional vectors, and the labels
will be k-dimensional ”one-hot” vectors, where k is the number of classes. A one-hot vector is a binary
vector whose elements are computed according to the following function:

yi =

1 x ∈ class i,
0 otherwise.

For example, for a classification problem with 3 classes, the label encoding an example from class 2 (zero-
indexing) would be: [0, 0, 1].

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 4

2.4 Convolutional Neural Networks
We will use the following notation when defining a convolutional neural network layer.

• X: A single image tensor, of shape 1 × d1 × d2 × c, where d1 and d2 are the spatial dimensions, and c
is the number of channels.

• y: A single label vector, of shape 1 × k, where k is the number of classes.

• n[l]: The number of neurons in layer l.

• (k1, k2)[l]: The size of the spatial dimensions of the filters in layer l. Also referred to as the kernel1

size.

• W[l]: The tensor of filters convolved at layer l. This tensor has shape k1 × k2 × n[l−1] × n[l].

• b[l]: The bias vector for layer l, of shape 1 × n[l].

• H[l]: The output of layer l. This is a tensor of shape 1 × r1 × r2 × n[l], where (r1, r2) is the shape of
output of the convolution operation. Below we will discuss how to calculate this.

• σ[l](·): The nonlinear “activation function” applied at layer l.

In a convolutional layer, each filter is convolved with the input image, across every image channel. This
operation is, essentially, a sliding sum of element-wise products. Figure 3 gives a visual example. To
compute a single element in the intermediate output Z, for a single neuron n and a single channel c in the
input X, we compute

Z[d1, d2, n] = (X ∗W)[d1, d2, n] =
∑

i

∑
j

∑
c

W[i, j, c, n]X[d1 + i, d2 + j, c] + b[n].

Please note that the formula above is the cross-correlation formula from signal processing and NOT the
convolution formula. Nevertheless this is what ML people call convolution and so will we. It actually
makes sense to use cross-correlation instead of using convolution because the former can be interpreted as
producing an output which is higher at locations where the image has the pattern in the filter and low else-
where. Furthermore, convolution is the same as cross-correlation with a flipped filter, and we learn the filters,
so it should not make any difference operationally whether you implement convolution or cross-correlation.
However, in order to pass the tests, you must implement cross-correlation and call that convolution because
that’s how we do it in ML-land.

In this equation, we drop the layer superscripts for clarity, and index elements of the matrices in brackets.
The output of this operation is what we call a “feature map,” which essentially captures the strength of each
filter at every region in the image. In the equation above, we slide the filter over the image in increments
of one pixel. We can choose to take a larger steps instead. The size of the step taken in the convolution
operation is referred to as the stride.

The output of the convolutional layer is
H[l] = σ[l](Z[l]).

1“Kernel” is an overloaded word. In the context of convolutional networks, the convolutional filter is also called the “convolu-
tional kernel”. This has no relationship with the “kernel” in the kernel trick and kernel methods. The convolutional kernel is also
referred to as a “mask” in lecture.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Figure 3: Figure showing an example of one convolution.

Figure 4: Figure showing an example of a max pooling layer with a kernel size of 2 and stride of 2.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 6

A pooling layer is used to downsample the input feature maps. It takes an input array of shape 1×d1×d2×c
and outputs an array of shape 1 × r1 × r2 × c. Note that it does not change the number of channels, but
typically reduces the number of spatial dimensions, i.e., r1 < d1 and r2 < d2. In order to do this, we have a
kernel of shape k1×k2 and a stride s. For each channel, we take either the max or the average of all the points
in the window of size k1 × k2. Then we slide the window by s pixels and repeat until we have performed this
operation over the entire input image. This is illustrated in Figure 4. When the operation performed over
each sliding window is max, it is called max pooling, whereas when the operation is averaging, then it is
called average pooling. Using similar notation as above, the function computed by a max pooling layer is:

Z[r1, r2, c] = MaxPool(X)[r1, r2, c] = max(X[r1s : r1s + k1, r2s : r2s + k2, c]).

Replacing the max function with the average function, we get an average pooling layer. This function is
abstracted away as pool fn in the code. Note that pool fn takes an array as input and outputs a single
float. The notation on the right hand side should be read as array slicing as in numpy.

Traditional CNNs operate on images by combining convolutional layers with pooling layers to progressively
”shrink” the spatial size of the input until it is small enough to be fed to fully-connected network layers for
classification.

3 The Neural Nets Package

3.1 Structure
We have provided a modularized codebase for constructing neural networks. The codebase has the following
structure.

Figure 5: The structure of the starter codebase.

As you can see, the modules in the codebase reflect the structure outlined above. Different losses, activations,
layers, optimizers, hyperparameters, and neural network architectures can be combined to yield different
architectures.

In the codebase we have provided, each layer is an object with a few relevant attributes.

• parameters: An OrderedDict containing the weights and biases of the layer.

• gradients: An OrderedDict containing the derivatives of the loss with respect to the weights and
biases of the layer, with the same keys as parameters.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 7

• cache: An OrderedDict containing intermediate quantities calculated in the forward pass that are
useful for the backward pass.

• activation: An Activation instance that is the activation function applied by this layer.

• n in: The number of input units (input channels in CNN).

• n out: The number of output units (output channels in CNN).

You will pass the layer a parameter that selects an activation function from those defined in activations.py.
This will be stored as an attribute of the layer, which can be called as layer.activation(). The forward
and backward passes of the layer are defined by the following methods.

• forward This method takes as input the output X from the previous layer (or input data). This method
computes the function φ(·) from above, combining the input with the weights W and bias b that are
stored as attributes. It returns an output out and saves the intermediate value Z to the cache attribute,
as it is needed to compute gradients in the backward pass.

def forward(self, X: np.ndarray) -> np.ndarray:

"""Forward pass: multiply by a weight matrix, add a bias, apply activation.

Also, store all necessary intermediate results in the `cache` dictionary
to be able to compute the backward pass.

"""

...

• backward This method takes the gradient of the downstream loss as input and uses the cached values
to compute gradients with respect to its inputs and weights. It returns the gradient of the loss with
respect to the input of the layer.

def backward(self, dLdY: np.ndarray) -> np.ndarray:

"""Backward pass for fully connected layer.

Compute the gradients of the loss with respect to:

1. the weights of this layer (mutate the `gradients` dictionary)
2. the bias of this layer (mutate the `gradients` dictionary)
3. the input of this layer (return this)

"""

...

Each activation function has a similar (but simpler) structure:

class Linear(Activation):

def __init__(self):

super().__init__()

def forward(self, Z: np.ndarray) -> np.ndarray:

"""Forward pass for f(z) = z."""

return Z

def backward(self, Z: np.ndarray, dY: np.ndarray) -> np.ndarray:

"""Backward pass for f(z) = z."""

return dY

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 8

3.2 Testing
We are using the unittestmodule built into Python for testing. Note that the tests are not comprehensive,
so it is possible that your code passes all the tests but is still broken and gives you poor performance. We test
the forward and backward methods of all the layers that you implement, along with a few that you don’t
have to implement (which should already be passing their tests). We also test the weight initialization of
the FullyConnected layer so that you have some guidance when you implement a layer for the first time.
When you are done with the homework, you must make sure that your code passes all the tests except
the tests for the L2 loss function and the Sigmoid activation function. You should have 21/25 tests passing
at least. (You can implement the L2 loss and Sigmoid activation function if you want to make those tests
pass.)

To run all the tests, make sure that you are in the root directory of the project (and not in either of the
neural networks/ and tests/ directories). Then run the following:

python -m unittest -v

25 tests will be run. Before you implement anything, 17 tests should fail and 8 should pass.

The tests are located in the tests/ directory. Please do not modify the pre-existing tests because they
rely on data generated by a correct implementation, and any modifications can cause the tests to fail. The
data is located in the tests/data directory. However, if you wish to write your own tests in addition to the
ones that are already provided, then please refer to this tutorial and the official documentation. Note that we
don’t require you to write your own tests as part of this homework.

The tests are organized into separate classes that mirror the structure of the classes that they test. For
example, the forward method of the Conv2D class located in neural networks/layers.py is tested by
the test forward method of the TestConv2D class located in tests/test layers.py. If you want to
run that specific test, you can use the following command root directory of the project:
python -m unittest -v tests.test_layers.TestConv2D.test_forward

If you instead want to run all the tests defined in the TestConv2D class, you should run:

python -m unittest -v tests.test_layers.TestConv2D

And if you want to run all the tests in test layers.py, then you should run:

python -m unittest -v tests.test_layers

We have also included a Jupyter Notebook named check gradients.ipynb, which only contains gradient
checks for your layers, which you can use for debugging your layers’ gradients. This can provide more
debuggability than simply running the provided unit tests. Note that we do not require you to provide us
the output of those tests, since gradients are implicitly tested in the test backward methods of the testing
classes.

3.3 Submission
Please run

python3 generate_submission.py --help

for instructions on how to use the script to extract your implementations for the submission.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 9

https://www.digitalocean.com/community/tutorials/how-to-use-unittest-to-write-a-test-case-for-a-function-in-python
https://docs.python.org/3/library/unittest.html

The script generate submission.py extracts all the code from your implementations and produces either
a LATEX or markdown file containing your code implementations, when given the flag --format latex and
--format markdown respectively. The generated document contains your functions in separate sections for
activation functions, layers, losses, and the model. These can be sections, subsections, or subsubsections de-
pending on whether you supply the flag --heading level 1, --heading level 2, or --heading level
3.

For example, if you want LATEX output with each part (activations, layers, losses, and the model) in a
different subsection, with the output saved to submission.tex, you would run the following:

python3 generate_submission.py --format latex --heading_level 2 --output submission.tex

whereas if you want markdown output with each part (activations, layers, losses, and the model) in a different
subsubsection, with the output saved to submission.md, you would run the following:

python3 generate_submission.py --format markdown --heading_level 3 --output submission.md

We would suggest running these commands to see exactly what they do.

The markdown document will compile by itself, but you would most likely want to create a markdown cell
in a Jupyter Notebook and copy-paste the generated markdown into that cell. That should work seamlessly
provided you can already compile Jupyter Notebooks into PDFs.

Note that the LATEX document will not compile by itself. It is meant to generate code that you can then
\input{} into your LATEX document.

Feel free to play around with the script if you want to. Notably, if you change some function which is not in
the student implementations list, then you could add that function to the student implementations
list to have the script automatically gather your code from that function (but we think that most students will
not have to do this).

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 10

Questions
The background section of the homework has ended. The following sections contain the questions you
must complete.

4 Basic Network Layers
In this question you will implement the layers needed for basic classification neural networks. For each part,
you will be asked to 1) derive the gradients, 2) write the matching code, 3) pass the tests.

Keep in mind that your solutions to all layers must operate on mini-batches of data and should not use
for-loops to iterate over the data points in a batch.

4.1 ReLU
First, you will implement the ReLU activation function in activations.py.

σReLU(γ) =

0 γ < 0,
γ otherwise.

Note that the activation function is applied element-wise to a vector input.

Instructions

1. First, derive the gradient of the downstream loss with respect to the input of the ReLU activation
function, Z. You must arrive at a solution for batched input X.

2. Next, implement the forward and backward passes of the ReLU activation in the script activations.py.
Include your code in your writeup (either a screenshot or typesetting is fine).Do not iterate over
training examples, use batched operations.

3. Include the output of running python -m unittest -v tests.test activations.TestReLU.
Make sure that the tests are passing.

4.2 Fully-Connected Layer
Now you will implement the forward and backward passes for the fully-connected layer in the layers.py
script. The code is marked with YOUR CODE HERE statements indicating what to implement and where.
Please read the docstrings and the function signatures too. Write the fully-connected layer for a general
input h that contains a mini-batch of m examples with d features.

When implementing a new layer, it is important to manually verify correctness of the forward and backward
passes. We have provided a Jupyter notebook check gradients.ipynb for you to use to numerically
check the gradients of your layer implementations. Simply run the cell corresponding to each layer. The
printed errors should be very small, usually on the order of 10−8 or smaller.

Instructions

1. First, derive the gradients of the downstream loss L with respect to W and b in the fully-connected
layer, ∂L

∂W and ∂L
∂b . You will also need to take the derivative of the loss with respect to the input of the

layer ∂L
∂X , which will be passed to lower layers. Again, you must assume must arrive at a solution

for batched X and Z

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 11

2. Implement the forward and backward passes of the fully-connected layer in layers.py. First, initial-
ize the weights of the model using init parameters, which takes the shape of the design matrix as
input and initializes the parameters, cache, and gradients of the layer. The backward method takes in
an argument dLdY, the derivative of the loss with respect to the output of the layer, which is computed
by higher layers and backpropagated. This should be incorporated into your gradient calculation. In
your writeup, include the code you have implemented. Do not iterate over training examples, use
batched operations.

3. Include the output of python -m unittest -v tests.test layers.TestFullyConnected. Make
sure that the tests are passing.

4.3 Softmax Activation
Next, we need to define an activation function for the output layer. The ReLU activation function returns
continuous values that are (potentially) unbounded to the right. Since we are building a classifier, we want to
return probabilities over classes. The softmax function has the desirable property that it outputs a probability
distribution. That is, the softmax function squashes continuous values into the range [0, 1] and normalizes
the outputs so that they add up to 1. For this reason, many classification neural networks use the softmax
activation. The softmax activation takes in a vector s of k un-normalized values s1, . . . , sk and outputs a
probabiity distribution over the k possible classes. The forward pass of the softmax activation on input si is

σi =
esi∑k

j=1 es j
,

where k ranges over all elements in s. Due to issues of numerical stability, the following modified version
of this function is commonly used.

σi =
esi−m∑k

j=1 es j−m
,

where m = maxk
j=0 s j. We recommend implementing this method.

Instructions

1. Derive the Jacobian of the softmax activation function. You do not need to use batched inputs for
this question, an answer for a single training point is acceptable.

2. Implement the forward and backward passes of the softmax activation in activations.py. We
recommend vectorizing the backward pass for efficiency. For this quesiton only may you use a for
loop over training examples in the batch.

3. Include the output of python -m unittest -v tests.test activations.TestSoftMax. Make
sure that the tests are passing.

4.4 Cross-Entropy Loss
For this classification network, we will be using the multi-class cross-entropy loss function

L = −y ln (ŷ),

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 12

where y is the binary one-hot vector encoding the ground truth labels and ŷ is the network’s output, a vector
of probabilities over classes. The cross-entropy cost calculated for a mini-batch of m samples is

J = −
1
m

(m∑
i=1

Yi ln (Ŷi)
)
.

Instructions

1. Derive the gradient of the cross-entropy cost with respect to the network’s predictions, Ŷ . You must
use batched inputs.

2. Implement the forward and backward passes of the cross-entropy cost. Note that in the codebase
we have provided, we use the words “loss” and “cost” interchangeably. This is consistent with most
large neural network libraries, though technically “loss” denotes the function computed for a single
datapoint whereas “cost” is computed for a batch. You will be computing over batches. Do not iterate
over training examples, use batched operations.

3. Include the output of python -m unittest -v tests.test losses.TestCrossEntropy. Make
sure that the tests are passing.

5 Two-Layer Fully Connected Networks
Now, you will use the methods you’ve written to train a two-layer network (also referred to as a one hidden
layer network). You will use the Iris Dataset, which contains 4 features for 3 different classes of irises.

Instructions

1. Fill in the forward, backward, and predict methods for the NeuralNetwork class in models.py.
Define the parameters of your network in train ffnn.py. We have provided you with several other
classes that are critical for the training process.

• The data loader (in datasets.py), which is responsible for loading batches of data that will
be fed to your model during training. You may wish to alter the data loader to handle data
pre-processing. Note that all datasets you are given have not been normalized or standardized.

• The stochastic gradient descent optimizer (in optimizers.py), which performs the gradient
updates and optionally incorporates a momentum term.

• The learning rate scheduler (in schedulers.py), which handles the optional learning rate de-
cay. You may choose to use either a constant or exponentially decaying learning rate.

• Weight initializers (in weights.py). We provide you with many options to explore, but we
recommend using xavier uniform as a default.

• A logger (in logs.py), which saves hyperparameters and learned parameters and plots the loss
as your model trains.

Outputs will be saved to the folder experiments/. You can change the name of the folder a given
run saves to by changing the parameter called model name. Be careful about overwriting folders; if
you forget to change the name and perform a run with identical hyperparameters, your previous run
will be overwritten!

2. Train a 2-layer neural network on the Iris Dataset while varying the following hyperparameters.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 13

https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/

• Learning rate

• Hidden layer size

You must try at least 3 different combinations of these hyperparameters. Report the results of your
exploration, including the values of the parameters you explored and which set of parameters gave the
best test error. Provide plots showing the loss versus iterations for your best model and report your
final test error.

6 CNN Layers
In this problem, you will write the forward and backward passes of a convolutional neural network layer.
Convolutional neural networks take considerably longer to train than the feedforward layers we have built,
and the numpy implementation you will write here will be impractically slow. So, you will not be asked to
train your network. Instead, we will simply run tests on the forward and backward passes of your network.

Again, remember that all your implementations and derived gradients must be for mini-batches, and not
single examples. For CNN’s, the input tensor will be of shape (m,H,W,C).

6.1 Convolutional Layer
1. Derive the gradient of the loss with respect to the input and parameters (weights and biases) of a

convolutional layer. For this question your answer may be in the form of individual component
partial derivatives. You may also ignore stride and assume both the filter and image are infinitely
zero-padded outside of their bounds.

2. Fill in the forward and backward passes of the Conv2D layer in layers.py. Include your code in
your submission. Do not iterate over training examples, use batched operations.

3. Run python -m unittest -v tests.test layers.TestConv2D. Make sure the tests are pass-
ing and include the output in your submission.

6.2 Pooling Layers
1. Explain how we can use the backprop algorithm to compute derivatives through the max pooling and

average pooling operations. (A plain English answer will suffice; equations are optional.) Carefully
consider the values you must keep track of!

2. Fill in the forward and backward passes of the Pool2D layer in layers.py. Include your code in
your submission. Do not iterate over training examples, use batched operations.

3. Run python -m unittest -v tests.test layers.TestPool2D. Make sure the tests are pass-
ing and include the output in your submission.

7 Kaggle
Please see the Google Colab Notebook here that contains the questions.

As with every homework, you are allowed to use any setup you wish. However, we highly recommend you
to use Google Colab for free access to GPUs, which will significantly improve the speed of neural network

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 14

https://colab.research.google.com/drive/1Gdb_-QfFuXFAek5cISaJF2_zfByvtcq_?usp=sharing
https://colab.research.google.com

training. Instructions are provided in the notebook itself. Note that if you have access to GPUs locally, then
feel free to run the notebook on your computer.

The following sections mirror the Colab Notebook and provide the deliverables for each question.

7.1 MLP for Fashion MNIST
Deliverables:

1. Provide code for training an MLP on the fashion MNIST dataset (can be tagged from colab notebook
and in the code appendix)

2. A plot of the training and validation loss for each epoch of training for at least 8 epochs.

3. A plot of the training and validation accuracy for each epoch, achieving a final validation accuracy of
at least 82%.

7.2 CNNs for CIFAR-10
Deliverables:

1. Provide the code for training your CNN model (can be in appendix).

2. Submit to Kaggle and include your test accuracy in your report. Our simple reference solution gets a
test accuracy of 74.8% after 10 epochs.

3. Provide at least 1 training curve for your model, depicting loss per epoch or step after training for at
least 8 epochs.

4. Explain the components of your final model, and how you think your design choices contributed to
it’s performance.

HW6,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 15

	Honor Code
	Background
	Neural Networks
	Batching
	Feed-Forward, Fully-Connected Neural Networks
	Convolutional Neural Networks

	The Neural Nets Package
	Structure
	Testing
	Submission

	Basic Network Layers
	ReLU
	Fully-Connected Layer
	Softmax Activation
	Cross-Entropy Loss

	Two-Layer Fully Connected Networks
	CNN Layers
	Convolutional Layer
	Pooling Layers

	Kaggle
	MLP for Fashion MNIST
	CNNs for CIFAR-10

