
CS 189 Introduction to Machine Learning
Spring 2021 Jonathan Shewchuk HW5
Due: Wednesday, March 31 at 11:59 pm

Submit your predictions for the test sets to Kaggle as early as possible. Include your Kaggle scores in your
write-up (see below). The Kaggle competition for this assignment can be found at

• Spam: https://www.kaggle.com/c/spring21-cs189-hw5-spam/overview

• Titanic: https://www.kaggle.com/c/spring21-cs189-hw5-titanic/overview

Write-up: Submit your solution in PDF format to “Homework 5 Write-Up” on Gradescope.

• State your name, and if you have discussed this homework with anyone (other than GSIs), list the
names of them all.

• Begin the solution for each question in a new page. Do not put content for different questions in the
same page. You may use multiple pages for a question if required.

• If you include figures, graphs or tables for a question, any explanations should accompany them in
the same page. Do NOT put these in an appendix!

• Only PDF uploads to Gradescope will be accepted. You may use LATEX or Word to typeset your
solution or scan a neatly handwritten solution to produce the PDF.

• Replicate all your code in an appendix. Begin code for each coding question in a fresh page. Do
not put code from multiple questions in the same page. When you upload this PDF on Gradescope,
make sure that you assign the relevant pages of your code from appendix to correct questions.

Code: Additionally, submit all your code as a ZIP to “Homework 5 Code” on Gradescope.

• Set a seed for all pseudo-random numbers generated in your code. This ensures your results are
replicated when readers run your code.

• Include a README with your name, student ID, the values of the random seed (above) you used,
and any instructions for compilation.

• Do NOT provide any data files, but supply instructions on how to add data to your code.

• Code requiring exorbitant memory or execution time won’t be considered.

• Code submitted here must match that in the PDF Write-up, and produce the exact output submitted
to Kaggle. Inconsistent or incomplete code won’t be accepted.
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1 Honor Code
Declare and sign the following statement:

“I certify that all solutions in this document are entirely my own and that I have not looked at anyone else’s
solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your) creation. Fur-
thermore, all external material (i.e., anything outside lectures and assigned readings, including figures and
pictures) should be cited properly. We wish to remind you that consequences of academic misconduct are
particularly severe!

2 Random Forest Motivation
Ensemble learning is a general technique to combat overfitting, by combining the predictions of many varied
models into a single prediction based on their average or majority vote.

(a) The motivation of averaging. Consider a set of uncorrelated random variables {Yi}
n
i=1 with mean µ

and variance σ2. Calculate the expectation and variance of their average. (In the context of ensemble
methods, these Yi are analogous to the prediction made by classifier i. )

(b) Ensemble Learning – Bagging. In lecture, we covered bagging (Bootstrap AGGregatING). Bagging is
a randomized method for creating many different learners from the same data set.

Given a training set of size n, generate T random subsamples, each of size n′, by sampling with re-
placement. Some points may be chosen multiple times, while some may not be chosen at all. If n′ = n,
around 63% are chosen, and the remaining 37% are called out-of-bag (OOB) samples.

(a) Why 63%?
(Hint: consider what happens when n is very large.)

(b) If we use bagging to train our model, How should we choose the hyperparameter T? Recall, T is
the number of subsamples, and typically, a few dozen to several thousand trees are used, depending
on the size and nature of the training set.

(c) In part (a), we see that averaging reduces variance for uncorrelated classifiers. Real-world prediction
will of course not be completely uncorrelated, but reducing correlation among decision trees will gen-
erally reduce the final variance. Reconsider a set of correlated random variables {Zi}

n
i=1, where each

Zi ∈ R
1 is a scalar. Suppose ∀i , j, Corr(Zi,Z j) = ρ. Calculate the variance of their average.

(d) Is a random forest of stumps (trees with a single feature split or height 1) a good idea in general? Does
the performance of a random forest of stumps depend much on the number of trees? Think about the
bias of each individual tree and the bias of the average of all these random stumps.

(Hint: think about the above question in terms of bias and variance.)
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3 Decision Trees for Classification
In this problem, you will implement decision trees and random forests for classification on three datasets:
1) the spam dataset, and 2) a Titanic dataset to predict Titanic survivors. The data is with the assignment.

In lectures, you were given a basic introduction to decision trees and how such trees are trained. You
were also introduced to random forests. Feel free to research different decision tree techniques online. You
do not have to implement boosting, though it might help with Kaggle.

3.1 Implement Decision Trees

See the Appendix for more information. You are not allowed to use any off-the-shelf decision tree imple-
mentation. Some of the datasets are not “cleaned,” i.e., there are missing values, so you can use external
libraries for data preprocessing and tree visualization (in fact, we recommend it). Be aware that some of
the later questions might require special functionality that you need to implement (e.g., max depth stopping
criterion, visualizing the tree, tracing the path of a sample through the tree). You can use any programming
language you wish as long as we can read and run your code with minimal effort. In this part of your writeup,
include your decision tree code.

3.2 Implement Random Forests

You are not allowed to use any off-the-shelf random forest implementation. If you architected your code
well, this part should be a (relatively) easy encapsulation of the previous part. In this part of your writeup,
include your random forest code.

3.3 Describe implementation details

We aren’t looking for an essay; 1–2 sentences per question is enough.

1. How did you deal with categorical features and missing values?

2. What was your stopping criterion?

3. How did you implement random forests?

4. Did you do anything special to speed up training?

5. Anything else cool you implemented?

3.4 Performance Evaluation

For each of the 2 datasets, train both a decision tree and random forest and report your training and validation
accuracies. You should be reporting 8 numbers (2 datasets × 2 classifiers × training/validation). In addition,
for both datasets, train your best model and submit your predictions to Kaggle. Include your Kaggle display
name and your public scores on each dataset. You should be reporting 2 Kaggle scores.

3.5 Writeup Requirements for the Spam Dataset

1. (Optional) If you use any other features or feature transformations, explain what you did in your
report. You may choose to use something like bag-of-words. You can implement any custom feature
extraction code in featurize.py, which will save your features to a .mat file.
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2. For your decision tree, and for a data point of your choosing from each class (spam and ham), state
the splits (i.e., which feature and which value of that feature to split on) your decision tree made to
classify it. An example of what this might look like:

(a) (“viagra”) ≥ 2

(b) (“thanks”) < 1

(c) (“nigeria”) ≥ 3

(d) Therefore this email was spam.

(a) (“budget”) ≥ 2

(b) (“spreadsheet”) ≥ 1

(c) Therefore this email was ham.

3. Generate a random 80/20 training/validation split. Train decision trees with varying maximum depths
(try going from depth = 1 to depth = 40) with all other hyperparameters fixed. Plot your validation
accuracies as a function of the depth. Which depth had the highest validation accuracy? Write 1–2
sentences explaining the behavior you observe in your plot. If you find that you need to plot more
depths, feel free to do so.

3.6 Writeup Requirements for the Titanic Dataset

Train a very shallow decision tree (for example, a depth 3 tree, although you may choose any depth that
looks good) and visualize your tree. Include for each non-leaf node the feature name and the split rule, and
include for leaf nodes the class your decision tree would assign. You can use any visualization method you
want, from simple printing to an external library; the rcviz library on github works well.
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A Appendix

Data Processing for Titanic
Here’s a brief overview of the fields in the Titanic dataset. You will need to preprocess the dataset into a
form usable by your decision tree code.

1. survived: the label we want to predict. 1 indicates the person survived, whereas 0 indicates the person
died.

2. pclass: Measure of socioeconomic status. 1 is upper, 2 is middle, 3 is lower.

3. age: Fractional if less than 1.

4. sex: Male/female.

5. sibsp: Number of siblings/spouses aboard the Titanic.

6. parch: Number of parents/children aboard the Titanic.

7. ticket: Ticket number.

8. fare: Fare.

9. cabin: Cabin number.

10. embarked: Port of embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

You will face two challenges you did not have to deal with in previous datasets:

1. Categorical variables. Most of the data you’ve dealt with so far has been continuous-valued. Some
features in this dataset represent types/categories. Here are two possible ways to deal with categorical
variables:

(a) (Easy) In the feature extraction phase, map categories to binary variables. For example suppose
feature 2 takes on three possible values: ‘TA’, ‘lecturer’, and ‘professor’. In the data matrix,
these categories would be mapped to three binary variables. These would be columns 2, 3, and
4 of the data matrix. Column 2 would be a boolean feature {0, 1} representing the TA category,
and so on. In other words, ‘TA’ is represented by [1, 0, 0], ‘lecturer’ is represented by [0, 1, 0],
and ‘professor’ is represented by [0, 0, 1]. Note that this expands the number of columns in your
data matrix. This is called “vectorizing,” or “one-hot encoding” the categorical feature.

(b) (Hard, but more generalizable) Keep the categories as strings or map the categories to indices
(e.g. ‘TA’, ‘lecturer’, ‘professor’ get mapped to 0, 1, 2). Then implement functionality in deci-
sion trees to determine split rules based on the subsets of categorical variables that maximize
information gain. You cannot treat these as normal continuous-valued features because ordering
has no meaning for these categories (the fact that 0 < 1 < 2 has no significance when 0, 1, 2 are
discrete categories).

2. Missing values. Some data points are missing features. In the csv files, these are represented by the
value ‘?’. You have three approaches:
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(a) (Easiest) If a data point is missing some features, remove it from the data matrix (this is useful
for your first code draft, but your submission must not do this).

(b) (Easy) Infer the value of the feature from all the other values of that feature (e.g., fill it in with
the mean, median, or mode of the feature. Think about which of these is the best choice and
why).

(c) (Hard, but more powerful). Use k-nearest neighbors to impute feature values based on the nearest
neighbors of a data point. In your distance metric you will need to define the distance to a
missing value.

(d) (Hardest, but more powerful) Implement within your decision tree functionality to handle miss-
ing feature values based on the current node. There are many ways this can be done. You might
infer missing values based on the mean/median/mode of the feature values of data points sorted
to the current node. Another possibility is assigning probabilities to each possible value of the
missing feature, then sorting fractional (weighted) data points to each child (you would need to
associate each data point with a weight in the tree).

For Python:

It is recommended you use the following classes to write, read, and process data:

csv.DictReader

sklearn.feature_extraction.DictVectorizer (vectorizing categorical variables)

(There's also sklearn.preprocessingOneHotEncoder, but it's much less clean)

sklearn.preprocessing.LabelEncoder

(if you choose to discretize but not vectorize categorical variables)

sklearn.preprocessing.Imputer

(for inferring missing feature values in the preprocessing phase)

If you use csv.DictReader, it will automatically parse out the header line in the csv file (first line of the
file) and assign values to fields in a dictionary. This can then be consumed by DictVectorizer to binarize
categorical variables.

To speed up your work, you might want to store your cleaned features in a file, so that you don’t need to
preprocess every time you run your code.

Approximate Expected Performance
For spam, using the base features and a regular decision tree, we got 74.4% testing accuracy. With a random
forest, we get around 75% testing accuracy on Titanic. You can get better performance. This is a general
ballpark range of what to expect; we will post cutoffs on Piazza.

Suggested Architecture
This is a complicated coding project. You should put in some thought about how to structure your program
so your decision trees don’t end up as horrific forest fires of technical debt. Here is a rough, optional spec
that only covers the barebones decision tree structure. This is only for your benefit—writing clean code will
make your life easier, but we won’t grade you on it. There are many different ways to implement this.

Your decision trees ideally should have a well-encapsulated interface like this:
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classifier = DecisionTree(params)

classifier.train(train_data, train_labels)

predictions = classifier.predict(test_data)

where train_data and test_data are 2D matrices (rows are data, columns are features).

A decision tree (or DecisionTree) is a binary tree composed of Nodes. You first initialize it with the
necessary parameters (which depend on what techniques you implement). As you train your tree, your
tree should create and configure Nodes to use for classification and store these nodes internally. Your
DecisionTree will store the root node of the resulting tree so you can use it in classification.

Each Node has left and right pointers to its children, which are also nodes, though some (like leaf nodes)
won’t have any children. Each node has a split rule that, during classification, tells you when you should
continue traversing to the left or to the right child of the node. Leaf nodes, instead of containing a split rule,
should simply contain a label of what class to classify a data point as. Leaf nodes can either be a special
configuration of regular Nodes or an entirely different class.

Node fields:

• split_rule: A length 2 tuple that details what feature to split on at a node, as well as the threshold
value at which you should split. The former can be encoded as an integer index into your data point’s
feature vector.

• left: The left child of the current node.

• right: The right child of the current node.

• label: If this field is set, the Node is a leaf node, and the field contains the label with which you
should classify a data point as, assuming you reached this node during your classification tree traver-
sal. Typically, the label is the mode of the labels of the training data points arriving at this node.

DecisionTree methods:

• entropy(labels): A method that takes in the labels of data stored at a node and compute the entropy
for the distribution of the labels.

• information_gain(features, labels, threshold): A method that takes in some feature of
the data, the labels and a threshold, and compute the information gain of a split using the threshold.

• entropy(label): A method that takes in the labels of data stored at a node and compute the entropy
(or Gini impurity).

• purification(features, labels, threshold): A method that takes in some feature of the
data, the labels and a threshold, and compute the drop in entropy (or Gini impurity) of a split using
the threshold.

• segmenter(data, labels): A method that takes in data and labels. When called, it finds the
best split rule for a Node using the entropy measure and input data. There are many different types
of segmenters you might implement, each with a different method of choosing a threshold. The
usual method is exhaustively trying lots of different threshold values from the data and choosing the
combination of split feature and threshold with the lowest entropy value. The final split rule uses the
split feature with the lowest entropy value and the threshold chosen by the segmenter. Be careful how
you implement this method! Your classifier might train very slowly if you implement this poorly.
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• train(data, labels): Grows a decision tree by constructing nodes. Using the entropy and seg-
menter methods, it attempts to find a configuration of nodes that best splits the input data. This
function figures out the split rules that each node should have and figures out when to stop growing
the tree and insert a leaf node. There are many ways to implement this, but eventually your Deci-
sionTree should store the root node of the resulting tree so you can use the tree for classification later
on. Since the height of your DecisionTree shouldn’t be astronomically large (you may want to cap
the height—if you do, the max height would be a hyperparameter), this method is best implemented
recursively.

• predict(data): Given a data point, traverse the tree to find the best label to classify the data point
as. Start at the root node you stored and evaluate split rules at each node as you traverse until you
reach a leaf node, then choose that leaf node’s label as your output label.

Random forests can be implemented without code duplication by storing groups of decision trees. You will
have to train each tree on different subsets of the data (data bagging) and train nodes in each tree on different
subsets of features (attribute bagging). Most of this functionality should be handled by a random forest
class, except attribute bagging, which may need to be implemented in the decision tree class. Hopefully, the
spec above gives you a good jumping-off point as you start to implement your decision trees. Again, it’s
highly recommended to think through design before coding.

Happy hacking!

B Submission Instructions
Please submit

• a PDF write-up containing your answers, plots, and code to Gradescope;

• a .zip file of your code and a README explaining how to run your code to Gradescope; and

• your two CSV files of predictions to Kaggle.
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