
CS 189/289A Introduction to Machine Learning
Spring 2021 Jonathan Shewchuk HW2: I r Math
Due Wednesday, February 10 at 11:59 pm

• Homework 2 is an entirely written assignment; no coding involved.

• We prefer that you typeset your answers using LATEX or other word processing software. If
you haven’t yet learned LATEX, one of the crown jewels of computer science, now is a good
time! Neatly handwritten and scanned solutions will also be accepted.

• In all of the questions, show your work, not just the final answer.

• Start early. This is a long assignment. Most of the material is prerequisite material not
covered in lecture; you are responsible for finding resources to understand it.

Deliverables:

1. Submit a PDF of your homework to the Gradescope assignment entitled “HW2 Write-Up”.
You may typeset your homework in LATEX or Word (submit PDF format, not .doc/.docx
format) or submit neatly handwritten and scanned solutions. Please start each question on
a new page. If there are graphs, include those graphs in the correct sections. Do not put
them in an appendix. We need each solution to be self-contained on pages of its own.

• In your write-up, please state whom you had discussions with (not counting course staff)
about the homework contents.

• In your write-up, please copy the following statement and sign your signature next to it.
(Mac Preview and FoxIt PDF Reader, among others, have tools to let you sign a PDF
file.) We want to make it extra clear so that no one inadvertently cheats.
“I certify that all solutions are entirely in my own words and that I have not looked at
another student’s solutions. I have given credit to all external sources I consulted.”
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1 Identities with Expectation
For this exercise, the following identity might be useful: for a probability event A, P(A) = E[1{A}],
where 1{·} is the indicator function.

1. Let X be a random variable with density f (x) = λe−λx 1{x > 0}. Show that E[Xk] = k!
λk for

integer k ≥ 0. Hint: One way is to do induction on k.

2. For any non-negative random variable X and constant t > 0, show that P(X ≥ t) ≤ E[X]
t .

Hint: show that for a, b > 0, 1{a ≥ b} ≤ a
b .

3. For any non-negative random variable X, prove the identity

E[X] =

∫ ∞

0
P(X ≥ t)dt.

You may assume that X admits a density to simplify.

4. For any non-negative random variable X with finite variance (i.e., E[X2] < ∞), prove that

P(X > 0) ≥
(EX)2

E[X2]
.

Hint: Use the Cauchy–Schwarz inequality 〈u, v〉2 ≤ 〈u, u〉〈v, v〉. You have most likely seen it
applied when the inner product is the real dot product; however, it holds for arbitrary inner
products. Without proof, use the fact that the expectation E[UV] is a valid inner product of
random variables U and V .
(Note that by assumption we know P(X ≥ 0) = 1, so this inequality is indeed quite powerful.)

5. For a random variable X with finite variance and E[X] = 0, prove that

P(X ≥ t) ≤
E[X2]
E[X2] + t2 for any t ≥ 0

Hint: Try using logic similar to Question 1.4 on t − X.
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2 Probability Potpourri
1. Recall the covariance of two random variables X and Y is defined as Cov(X,Y) = E[(X −
E[X])(Y − E[Y])]. For a multivariate random variable Z (i.e., each index of Z is a random
variable), we define the covariance matrix Σ with entries Σi j = Cov(Zi,Z j). Concisely, Σ =

E[(Z − µ)(Z − µ)>], where µ is the mean value of the (column) vector Z. Show that the
covariance matrix is always positive semidefinite (PSD).

2. The probability that an archer hits her target when it is windy is 0.4; when it is not windy, her
probability of hitting the target is 0.7. On any shot, the probability of a gust of wind is 0.3.
Find the probability that

(i) on a given shot there is a gust of wind and she hits her target.

(ii) she hits the target with her first shot.

(iii) she hits the target exactly once in two shots.

(iv) there was no gust of wind on an occasion when she missed.

3. An archery target is made of 3 concentric circles of radii 1/
√

3, 1 and
√

3 feet. Arrows strik-
ing within the inner circle are awarded 4 points, arrows within the middle ring are awarded
3 points, and arrows within the outer ring are awarded 2 points. Shots outside the target are
awarded 0 points.

Consider a random variable X, the distance of the strike from the center (in feet), and let the
probability density function of X be

f (x) =


2

π(1+x2) x > 0

0 otherwise

What is the expected value of the score of a single strike?

4. A random variable Z is said to be drawn from the Poisson distribution with parameter λ > 0
if it takes values in non-negative integers with probability P(Z = k) = λke−λ

k! . Let X and Y be
two independent Poisson random variables with parameters λ > 0 and µ > 0 respectively.
Derive an expression for P(X | X + Y = n). What well-known probability distribution is this?
What are its parameters?
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3 Properties of Gaussians
1. Prove that E[eλX] = eσ

2λ2/2, where λ ∈ R is a constant, and X ∼ N(0, σ2). As a function of λ,
E[eλX] is also known as the moment-generating function.

2. Concentration inequalities are inequalities that place upper bounds on the likelihood that
a random variable X is far away from its mean µ, written P(|X − µ| ≥ t), with a falling
exponential function ae−bt2 having constants a, b > 0. Such inequalities imply that X is very
likely to be close to its mean µ. To make a tight bound, we want a to be as small and b to be
as large as possible.

For t > 0 and X ∼ N(0, σ2), prove that P(X ≥ t) ≤ exp
(
−t2/2σ2

)
, then show that P(|X| ≥ t) ≤

2 exp
(
−t2/2σ2

)
.

Hint: Consider using Markov’s inequality and the result from Question 3.1.

3. Let X1, . . . , Xn ∼ N(0, σ2) be i.i.d. (independent and identically distributed). Find a concen-
tration inequality, similar to Question 3.2, for the average of n Gaussians: P( 1

n

∑n
i=1 Xi ≥ t)?

What happens as n→ ∞?
Hint: Without proof, use the fact that linear combinations of i.i.d. Gaussian-distributed vari-
ables are also Gaussian-distributed. Be warned that summing two Gaussian variables does
not mean that you can sum their probability density functions (no no no!).

4. Let X ∈ Rn ∼ N(0, σ2In) be an n-dimensional Gaussian random variable, where In denotes
the n×n identity matrix. You may interpret X as a (column) vector whose entries are i.i.d. real
values drawn from the scalar Gaussian N(0, σ2). Given a constant (i.e., not random) matrix
A ∈ Rn×n and a constant vector b ∈ Rn, derive the mean (which is a vector) and covariance
matrix of Y = AX + b. Use the fact that any linear transformation of a Gaussian random
variable is also a Gaussian random variable.

5. Let vectors u, v ∈ Rn be orthogonal (i.e., 〈u, v〉 = 0). Let X = (X1, . . . , Xn) be a vector of
n i.i.d. standard Gaussians, Xi ∼ N(0, 1),∀i ∈ [n]. Let ux = 〈u, X〉 and vx = 〈v, X〉. Are
ux and vx independent? If X1, . . . , Xn are independently but not identically distributed, say
Xi ∼ N(0, i), are ux and vx still independent?
Hint: Two Gaussian random variables are independent if and only if they are uncorrelated.

6. Prove that E
[
max1≤i≤n |Xi|

]
≤ C

√
log(2n)σ for some constant C ∈ R, where X1, . . . , Xn ∼

N(0, σ2) are i.i.d. (Interestingly, a similar lower bound holds: E
[
max1≤i≤n |Xi|

]
≥ C′

√
log(2n)σ

for some C′; but you don’t need to prove the lower bound).
Hint: Use Jensen’s inequality: f (E[Y]) ≤ E[ f (Y)] for any convex function f .
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4 Linear Algebra Review
1. First we review some basic concepts of rank and elementary matrix operations. Let A ∈ Rm×n

and B ∈ Rn×p. Let In denote the n × n identity matrix.

(a) Perform elementary row and column operations to transform
In 0
0 AB

 to
B In

0 A

.
(b) Use part (a) to prove that rank(A) + rank(B) − n ≤ rank(AB) ≤ min{rank(A), rank(B)}.

2. Let A ∈ Rn×n be a symmetric matrix. Prove equivalence between these three different defini-
tions of positive semi-definiteness (PSD).

(a) For all x ∈ Rn, x>Ax ≥ 0.

(b) All the eigenvalues of A are non-negative.

(c) There exists a matrix U ∈ Rn×n such that A = UU>.

Positive semi-definiteness will be denoted as A � 0.

3. Now that we’re equipped with different definitions of positive semi-definiteness, use them to
prove the following properties of PSD matrices.

(a) If A is PSD, all diagonal entries of A are non-negative: Aii ≥ 0,∀i ∈ [n].

(b) If A is PSD, the sum of all entries of A is non-negative:
∑n

j=1
∑n

i=1 Ai j ≥ 0.

(c) If A and B are PSD, then Tr(AB) ≥ 0, where Tr M denotes the trace of M.

(d) If A and B are PSD, then Tr(AB) = 0 if and only if AB = 0.

4. If M − N � 0 and both M and N are positive definite, is N−1 − M−1 PSD? Show your work.

5. Let A ∈ Rn×n be a symmetric matrix. Prove that the largest eigenvalue of A is

λmax(A) = max
‖x‖2=1

x>Ax.
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5 Gradients and Norms
1. Define the `p-norm as ‖x‖p =

(∑n
i=1 |xi|

p
)1/p

, where x ∈ Rn. Prove that the `1, `2, `∞ norms are
all within a constant factor of one another. The Cauchy–Schwarz inequality is useful here.

2. Aside from norms on vectors, we can also impose norms on matrices, and the most common
kind of norm on matrices is called the induced norm. Induced norms are defined to be

‖A‖p = sup
x,0

‖Ax‖p

‖x‖p

where the notation ‖ · ‖p on the right-hand side denotes the vector `p-norm. Please give the
closed-form (or the most simple) expressions for the following induced norms of A ∈ Rm×n.

(a) ‖A‖2. (Hint: Similar to Question 4.5)

(b) ‖A‖∞.

3. (a) Let α =
n∑

i=1
yi ln βi for y, β ∈ Rn. What are the partial derivatives ∂α

∂βi
?

(b) Let β = sinh γ for γ ∈ Rn (treat the sinh as an element-wise operation; i.e., βi = sinh γi).
What are the partial derivatives ∂βi

∂γ j
?

(c) Let γ = Aρ + b for b ∈ Rn, ρ ∈ Rm, A ∈ Rn×m. What are the the partial derivatives ∂γi
∂ρ j

?

(d) Let f (x) =
n∑

i=1
yi ln

(
sinh(Ax + b)i

)
; A ∈ Rn×m, y ∈ Rn, b ∈ Rn are given. What are the

partial derivatives ∂ f
∂x j

?
Hint: Use the chain rule.

4. Consider a linear decision function f (x) = w · x + α and the hyperplane decision boundary
H = {x : w · x = −α}. Prove that if w is a unit vector, then the signed distance (the `2-norm
distance with an appropriate sign) from x to the closest point on H is w · x + α.

5. Let X ∈ Rn×d be a data matrix, consisting of n samples, each of which has d features, and
let y ∈ Rn be a vector of labels. We wish to find the best linear approximation, i.e., we want
to find the w that minimizes the loss L(w) = ‖y − Xw‖22. Assuming X has full column rank,
compute w∗ = argminwL(w) in terms of X and y.
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6 Gradient Descent

Consider the optimization problem min
x∈Rn

1
2

x>Ax − b>x, where A ∈ Rn×n is a PSD matrix with
0 < λmin(A) ≤ λmax(A) < 1.

1. Find the optimizer x∗.

2. Solving a linear system directly using Gaussian elimination takes O(n3) time, which may be
wasteful if the matrix A is sparse. For this reason, we will use gradient descent to compute
an approximation to the optimal point x∗. Write down the update rule for gradient descent
with a step size of 1 (i.e., taking a step whose length is the length of the gradient).

3. Show that the iterates x(k) satisfy the recursion x(k) − x∗ = (I − A)(x(k−1) − x∗).

4. Using Question 4.5, prove ‖Ax‖2 ≤ λmax(A)‖x‖2.
Hint: Use the fact that, if λ is an eigenvalue of A, then λ2 is an eigenvalue of A2.

5. Using the previous two parts, show that for some 0 < ρ < 1,

‖x(k) − x∗‖2 ≤ ρ‖x(k−1) − x∗‖2.

6. Let x(0) ∈ Rn be the starting value for our gradient descent iterations. If we want a solution
x(k) that is ε > 0 close to x∗, i.e. ‖x(k)− x∗‖2 ≤ ε, then how many iterations of gradient descent
should we perform? In other words, how large should k be? Give your answer in terms of
ρ, ‖x(0) − x∗‖2, and ε.
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