
CS 189 Introduction to Machine Learning
Spring 2021 Jonathan Shewchuk HW1
Due: Wednesday, January 27 at 11:59 pm

This homework is comprised of a set of coding exercises and a few math problems. While we have
you train models across three datasets, the code for this entire assignment can be written in under
250 lines.

Start this homework early! You can submit to Kaggle only twice a day.

Deliverables:

1. Submit your predictions for the test sets to Kaggle as early as possible. Include your Kaggle
scores in your write-up (see below).

2. Submit a PDF of your homework, with an appendix listing all your code, to the Gradescope
assignment entitled “HW1 Write-Up”. You may typeset your homework in LaTeX or Word
or submit neatly handwritten and scanned solutions. Please start each question on a new
page. If there are graphs, include those graphs in the correct sections. Do not put them in an
appendix. We need each solution to be self-contained on pages of its own.

• On the first page of your write-up, please list students who helped you or whom you
helped on the homework. (Note that sending each other code is not allowed.)

• On the first page of your write-up, please copy the following statement and sign your
signature next to it. (Mac Preview and FoxIt PDF Reader, among others, have tools to
let you sign a PDF file.) We want to make extra clear the consequences of cheating.
“I certify that all solutions are entirely in my own words and that I have not looked at
another student’s solutions. I have given credit to all external sources I consulted.”

3. Submit all the code needed to reproduce your results to the Gradescope assignment entitled
“HW1 Code”. You must submit your code twice: once in your PDF write-up (above) so
the readers can easily read it, and again in compilable/interpretable form so the readers can
easily run it. Do NOT include any data files we provided. Please include a short file named
README listing your name, student ID, and instructions on how to reproduce your results.
Please take care that your code doesn’t take up inordinate amounts of time or memory.

The Kaggle score will not be accepted if the code provided a) does not compile or b) compiles
but does not produce the file submitted to Kaggle.

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Python Configuration and Data Loading
This section is only setup and has no requires no submitted solution. Please follow the in-
structions below to ensure your Python environment is configured properly, and you are able to
successfully load the data provided with this homework. For all coding questions, we recommend
using Anaconda for Python 3.

(a) Either install Anaconda for Python 3, or ensure you’re using Python 3. To ensure you’re run-
ning Python 3, open a terminal in your operating system and execute the following command:
python --version

Do not proceed until you’re running Python 3.

(b) Install the following dependencies required for this homework by executing the following com-
mand in your operating system’s terminal:
pip install scikit-learn scipy numpy matplotlib

Please use Python 3 with the modules specified above to complete this homework.

(c) You will be running out-of-the-box implementations of Support Vector Machines to classify
three datasets. You will find a set of .mat files in the data folder for this homework. Each
.mat file will load as a Python dictionary. Each dictionary contains three fields:

• training data, the training set features. Rows are sample points and columns are features.
• training labels, the training set labels. Rows are sample points. There is one column:

The labels corresponding to rows of training data above.
• test data, the test set features. Rows are sample points and columns are features. You will

fit a model to predict the labels for this test set, and submit those predictions to Kaggle.

The three datasets for the coding portion of this assignment are described below.

• mnist data.mat contains data from the MNIST dataset. There are 60,000 labeled digit
images for training, and 10,000 digit images for testing. The images are flattened grayscale,
28 × 28 pixels. There are 10 possible labels for each image, namely, the digits 0–9.

Figure 1: Examples from the MNIST dataset.

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 2

https://store.continuum.io/cshop/anaconda

• spam data.mat contains featurized spam data. The labels are 1 for spam and 0 for ham.
The data folder includes the script featurize.py and the folders spam, ham (not spam),
and test (unlabeled test data); you may modify featurize.py to generate new features for
the spam data.

• cifar10 data.mat contains data from the CIFAR10 dataset. There are 50,000 labeled ob-
ject images for training, and 10,000 object images for testing. The images are flattened to
3×32×32 (3 color channels). The labels 0–9 correspond alphabetically to the categories.
For example, 0 means airplane, 1 means automobile, 2 means bird, and so on.

Figure 2: Examples from the CIFAR-10 dataset.

To check whether your Python environment is configured properly for this homework, ensure
the following Python script executes without error. Pay attention to errors raised when at-
tempting to import any dependencies. Resolve such errors by manually installing the required
dependency (e.g. execute pip install numpy for import errors relating to the numpy pack-
age).
import sys

if sys.version_info[0] < 3:

raise Exception("Python 3 not detected.")

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

from scipy import io

for data_name in ["mnist", "spam", "cifar10"]:

data = io.loadmat("data/%s_data.mat" % data_name)

print("\nloaded %s data!" % data_name)

fields = "test_data", "training_data", "training_labels"

for field in fields:

print(field, data[field].shape)

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 3

For the entire assignment, you may only use sklearn for the SVM model and the accuracy
function. Everything else (generating plots) must be done without the use of sklearn.

1 Data Partitioning
Rarely will you receive “training” data and “validation” data; usually you will have to partition
available labeled data yourself. In this question, you will shuffle and partition each of the datasets
in the assignment. Shuffling prior to splitting crucially ensures that all classes are represented in
your partitions.

(a) For the MNIST dataset, write code that sets aside 10,000 training images as a validation set.

(b) For the spam dataset, write code that sets aside 20% of the training data as a validation set.

(c) For the CIFAR-10 dataset, write code that sets aside 5,000 training images as a validation set.

Note: Make sure that you shuffle the labels with the training images. It’s a very common error to
mislabel the training images by forgetting to permute the labels with the images!

You deliverable is to attach a copy of your data partitioning code to your homework report under
question 1.

2 Support Vector Machines: Coding
We will use linear Support Vector Machines to classify our datasets. For images, we will use the
simplest of features for classification: raw pixel brightness values. In other words, our feature
vector for an image will be a row vector with all the pixel values concatenated in a row major (or
column major) order.

There are several ways to evaluate models. We will use classification accuracy, or the percent
of examples classified correctly, as a measure of the classifier performance (see here: https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html).
Error rate, or one minus the accuracy is another common metric.

Train a linear Support Vector Machine (SVM) on all three datasets. For each dataset, plot the
accuracy on the training and validation sets versus the number of training examples that you used
to train your classifier. The number of training examples to use are listed for each dataset in the
following parts.

You may only use sklearn for the SVM model and the sklearn.metrics.accuracy_score
function. Everything else (generating plots) must be done without the use of sklearn.

(a) For the MNIST dataset, use raw pixels as features. Train your model with the following
numbers of training examples: 100, 200, 500, 1,000, 2,000, 5,000, 10,000. At this stage, you
should expect accuracies between 70% and 90%.

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

Hint: Be consistent with any preprocessing you do. Use either integer values between 0 and
255 or floating-point values between 0 and 1. Training on floats and then testing with integers
is bound to cause trouble.

(b) For the spam dataset, use the provided word frequencies as features. In other words, each
document is represented by a vector, where the ith entry denotes the number of times word i (as
specified in featurize.py) is found in that document. Train your model with the following
numbers of training examples: 100, 200, 500, 1,000, 2,000, ALL.

Note that this dataset does not have 10,000 examples; use all of your examples instead of
10,000. At this stage, you should expect accuracies between 70% and 90%.

(c) For the CIFAR-10 dataset, use raw pixels as features. At this stage, you should expect accura-
cies between 25% and 35%. Be forewarned that training SVMs for CIFAR-10 takes a couple
minutes to run for a large training set locally. Train your model with the following numbers of
training examples: 100, 200, 500, 1,000, 2,000, 5,000.

Note: You can use either SVC(kernel=’linear’) or LinearSVC as your SVM model, though
they each solve slightly different optimization problems using different libraries. On MNIST,
LinearSVC was faster on one member of Course Staff’s laptop, though the exact results will likely
depend on your computer, the parameters of the algorithm, and the data (num data pts vs num
features).

Your deliverable for this part should be three plots showing number of examples versus training
and validation accuracy for each of the datasets. Additionally, be sure to include your code in the
“Code Appendix” portion of your write-up.

3 Hyperparameter Tuning
In the previous problem, you learned parameters for a model that classifies the data. Many clas-
sifiers also have hyperparameters that you can tune to influence the parameters. In this problem,
we’ll determine good values for the regularization parameter C in the soft-margin SVM algorithm.

When we are trying to choose a hyperparameter value, we train the model repeatedly with different
hyperparameters. We select the hyperparameter that gives the model with the highest accuracy on
the validation dataset. Before generating predictions for the test set, the model should be retrained
using all the labeled data (including the validation data) and the previously-determined hyperpa-
rameter.

The use of automatic hyperparameter optimization libraries is prohibited for this part of the
homework.

Your deliverable is as follows. For the MNIST dataset, find the best C value. In your report, list at
least 8 C values you tried, the corresponding accuracies, and the best C value. As in the previous
problem, for performance reasons, you are required to train with up to 10,000 training examples
but not required to train with more than that. Again, reference any code you used to perform a
hyper-parameter sweep in the code appendix.

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5

4 K-Fold Cross-Validation
For smaller datasets (e.g., the spam dataset), the validation set contains fewer examples, and our
estimate of our accuracy might not be accurate—the estimate has high variance. A way to combat
this is to use k-fold cross-validation.

In k-fold cross-validation, the training data is shuffled and partitioned into k disjoint sets. Then the
model is trained on k − 1 sets and validated on the kth set. This process is repeated k times with
each set chosen as the validation set once. The cross-validation accuracy we report is the accuracy
averaged over the k iterations.

Use of automatic cross-validation libraries is prohibited for this part of the homework.

Your deliverable is as follows. For the spam dataset, use 5-fold cross-validation to find and report
the best C value. In your report, list at least 8 C values you tried, the corresponding accuracies,
and the best C value. Again, please include your code for cross validation or include a reference
to its location in your code appendix.

Hint: Effective cross-validation requires choosing from random partitions. This is best imple-
mented by randomly shuffling your training examples and labels, then partitioning them by their
indices.

5 Kaggle
• MNIST Competition: https://www.kaggle.com/c/spring21-cs189-hw1-mnist

• SPAM Competition: https://www.kaggle.com/c/spring21-cs189-hw1-spam

• CIFAR-10 Competition: https://www.kaggle.com/c/spring21-cs189-hw1-cifar10

With the best model you trained for each dataset, generate predictions for the test sets we provide
and save those predictions to .csv files. Be sure to use integer labels (not floating-point!) and no
spaces (not even after the commas). Upload your predictions to the Kaggle leaderboards (submis-
sion instructions are provided within each Kaggle competition). In your write-up, include your
Kaggle name as it displays on the leaderboard and your Kaggle score for each of the three datasets.

General comments about the Kaggle sections of homeworks. Most or all of the coding home-
works will include a Kaggle section. Whereas other parts of a coding assignment might impose
strict limits about what methods you’re permitted to use, the Kaggle portions permit you to apply
your creativity and find clever ways to improve your leaderboard performance. The main restric-
tion is that you cannot use an entirely different learning technique. For example, this is an SVM
homework, so you must use an SVM; you are not permitted to use a neural network or a decision
tree instead of (or in addition to) a support vector machine. (You are also not allowed to search for
the labeled test data and submit that to Kaggle; that’s outright cheating.)

For example, to achieve higher positions on the Kaggle leaderboards, you may optionally add
more features or use a nonlinear SVM kernel. Spam is a particularly good dataset for playing
with feature engineering; one easy way to perform better in spam/ham is to add extra features with

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 6

https://www.kaggle.com/c/spring21-cs189-hw1-mnist
https://www.kaggle.com/c/spring21-cs189-hw1-spam
https://www.kaggle.com/c/spring21-cs189-hw1-cifar10

featurize.py. Other examples of things you might investigate include SIFT and HOG features
for images, and a bag-of-words model for spam/ham. For reasons we’ll learn later this semester,
dropping features that have little or no predictive power will often improve your test performance
as much as adding the right new features. Although extensive creativity isn’t generally necessary
to get full points on an assignment, topping the Kaggle leaderboard gives your professor good
material for letters of recommendation.

Whatever creative ideas you apply, please explain what you did in your write-up. Cite any external
sources where you got ideas. If you have any questions about whether something is allowed or not,
ask on Piazza.

Remember to start early! Kaggle only permits two submissions per leaderboard per day. To help
you format the submission, please use check.py to run a basic sanity check on your submission
and save csv.py to help save your results.

To check your submission csv,
python check.py <competition name, eg. mnist> <submission csv file>

Your deliverable for this question has three parts. First, submit to all the Kaggle competitions
listed above. Second, include an explanation of what you tried, what worked, and what didn’t to
improve your accuracy. Finally, make sure to include all the code you used in the code appendix
and provide a reference to it.

6 Theory of Hard-Margin Support Vector Machines
A decision rule (or classifier) is a function r : Rd → ±1 that maps a feature vector (test point) to
+1 (“in class”) or −1 (“not in class”). The decision rule for linear SVMs is of the form

r(x) =

 +1 if w · x + α ≥ 0,
−1 otherwise,

(1)

where w ∈ Rd and α ∈ R are the parameters of the SVM. The primal hard-margin SVM optimiza-
tion problem (which chooses the parameters) is

min
w,α

|w|2 subject to yi(Xi · w + α) ≥ 1, ∀i ∈ {1, . . . , n}, (2)

where |w| = ‖w‖2 =
√

w · w.

We can rewrite this optimization problem by using Lagrange multipliers to eliminate the con-
straints. (If you’re curious to know what Lagrange multipliers are, the Wikipedia page is rec-
ommended, but you don’t need to understand them to do this problem.) We thereby obtain the
equivalent optimization problem

max
λi≥0

min
w,α

|w|2 −
n∑

i=1

λi(yi(Xi · w + α) − 1). (3)

Note: λi must be greater than or equal to 0.

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 7

https://en.wikipedia.org/wiki/Lagrange_multiplier

(a) Show that Equation (3) can be rewritten as the dual optimization problem

max
λi≥0

n∑
i=1

λi −
1
4

n∑
i=1

n∑
j=1

λiλ jyiy jXi · X j subject to
n∑

i=1

λiyi = 0. (4)

Hint: Use calculus to determine and prove what values of w and α optimize Equation (3).
Explain where the new constraint comes from.

SVM software usually solves this dual optimization program, not the primal optimization pro-
gram.

(b) Suppose we know the values λ∗i and α∗ that optimize Equation (3). Show that the decision rule
specified by Equation (1) can be written

r(x) =

 +1 if α∗ + 1
2

∑n
i=1 λ

∗
i yiXi · x ≥ 0,

−1 otherwise.
(5)

(c) Applying Karush–Kuhn–Tucker (KKT) conditions (See Wikipedia for more information.), any
pair of optimal primal and dual solutions w∗, α∗, λ∗ for linear, hard-margin SVM must satisfy
the following condition:

λ∗i (yi(Xi · w∗ + α∗) − 1) = 0 ∀i ∈ {1, . . . , n}

This condition is called complementary slackness. Explain what this implies for points corre-
sponding to λ∗i > 0. What relationship do they have with the margin?

(d) The training points Xi for which λ∗i > 0 are called the support vectors. In practice, we fre-
quently encounter training data sets for which the support vectors are a small minority of the
training points, especially when the number of training points is much larger than the number
of features. Explain why the support vectors are the only training points needed to evaluate the
decision rule.

(e) Assume the training points Xi and labels yi are linearly separable. Using the original SVM
formulation (not the dual) prove that there is at least one support vector for each class, +1 and
−1.

Hint: Use contradiction. Construct a new weight vector w′ = w/(1 + ε/2) and corresponding
bias α′ where ε > 0. It is up to you to determine what ε should be based on the contradiction.
If you provide a symmetric argument, you need only provide a proof for one of the two classes.

HW1,©UCB CS 189, Spring 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 8

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

	Data Partitioning
	Support Vector Machines: Coding
	Hyperparameter Tuning
	K-Fold Cross-Validation
	Kaggle
	Theory of Hard-Margin Support Vector Machines

