
CS 189
Spring 2016

Introduction to
Machine Learning Midterm

• Please do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your one-page cheat sheet.

• Electronic devices are forbidden on your person, including cell phones, iPods, headphones, and laptops.
Turn your cell phone off and leave all electronics at the front of the room, or risk getting a zero on
the exam.

• You have 1 hour and 20 minutes.

• Please write your initials at the top right of each odd-numbered page (e.g., write “JS” if you are Jonathan
Shewchuk). Finish this by the end of your 1 hour and 20 minutes.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• The total number of points is 100. There are 20 multiple choice questions worth 3 points each, and 3 written
questions worth a total of 40 points.

• For multiple-choice questions, fill in the bubbles for ALL correct choices: there may be more than one correct
choice, but there is always at least one correct choice. NO partial credit on multiple-choice questions: the
set of all correct answers must be checked.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right
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Q1. [60 pts] Multiple Choice
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at
least one correct choice. NO partial credit: the set of all correct answers must be checked.

(a) [3 pts] Which of the following learning algorithms will return a classifier if the training data is not linearly
separable?

© Hard-margin SVM

 Soft-margin SVM

© Perceptron

 Linear Discriminant Analysis (LDA)

(b) [3 pts] With a soft-margin SVM, which samples will have non-zero slack variables ξi?

 All misclassified samples

 All samples inside the margin

© All samples lying on the margin boundary

© All samples outside the margin

(c) [3 pts] Recall the soft-margin SVM objective function |w|2 +C
∑
i ξi. Which value of C is most likely to overfit

the training data?

© C = 0.01

© C = 1

© C = 0.00001

 C = 100

(d) [3 pts] There are several ways to formulate the hard-margin SVM. Consider a formulation in which we try to
directly maximize the margin β. The training samples are X1, X2, . . . , Xn and their labels are y1, y2, . . . , yn.
Which constraints should we impose to get a correct SVM? (Hint: Recall the formula for the distance from a
point to a hyperplane.) Maximize β subject to . . .

© yiX
T
i w ≤ β ∀i ∈ [1, n].

 yiX
T
i w ≥ β ∀i ∈ [1, n].

© |w| ≥ 1.

 |w| = 1.

(e) [3 pts] In the homework, you trained classifiers on the digits dataset. The features were the pixels in each
image. What features could you add that would improve the performance of your classifier?

© Maximum pixel intensity

 Average pixel intensity

 Number of enclosed regions

 Presence of a long horizontal line

(f) [3 pts] The Bayes risk for a decision problem is zero when

 the class distributions P (X|Y ) do not overlap.

© the training data is linearly separable.

© the loss function L(z, y) is symmetrical.

© the Bayes decision rule perfectly classifies the
training data.

(g) [3 pts] Let L(z, y) be a loss function (where y is the true class and z is the predicted class). Which of the
following loss functions will always lead to the same Bayes decision rule as L?

 L1(z, y) = aL(z, y), a > 0

© L2(z, y) = aL(z, y), a < 0

 L3(z, y) = L(z, y) + b, b > 0

 L4(z, y) = L(z, y) + b, b < 0
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(h) [3 pts] Gaussian discriminant analysis

© models P (Y = y|X) as a Gaussian.

 models P (Y = y|X) as a logistic function.

 is an example of a generative model.

 can be used to classify points without ever
computing an exponential.

(i) [3 pts] Which of the following are valid covariance matrices?

© A =

[
1 1
−1 1

]

 B =

[
1 −1
−1 2

]
© C =

[
0 1
1 2

]

 D =

[
1 1
1 1

]

(j) [3 pts] Consider a d-dimensional multivariate normal distribution that is isotropic (i.e., its isosurfaces are
spheres). Let Σ be its d × d covariance matrix. Let I be the d × d identity matrix. Let σ be the standard
deviation of any one component (feature). Then

© Σ = σI.

 Σ = σ2I.

© None of the above.

© Σ = 1
σ I.

© Σ = 1
σ2 I.

(k) [3 pts] In least-squares linear regression, imposing a Gaussian prior on the weights is equivalent to

© logistic regression

© adding a Laplace-distributed penalty term

 L2 regularization

© L1 regularization

(l) [3 pts] Logistic regression

© assumes that we impose a Gaussian prior on
the weights.

 minimizes a convex cost function.

© has a closed-form solution.

 can be used with a polynomial kernel.

(m) [3 pts] Ridge regression

© is more sensitive to outliers than ordinary
least-squares.

 reduces variance at the expense of higher bias.

© adds an L1-norm penalty to the cost function.

© often sets several of the weights to zero.

(n) [3 pts] Given a design matrix X ∈ Rn×d and labels y ∈ Rn, which of the following techniques could potentially
decrease the empirical risk on the training data (assuming the loss is the squared error)?

 Adding the feature “1” to each data point.

 Adding polynomial features to each data
point.

 Centering the vector y by subtracting the
mean ȳ from each component yi.

© Penalizing the model weights with L2 regu-
larization.
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(o) [3 pts] In terms of the bias-variance trade-off, which of the following is/are substantially more harmful to the
test error than the training error?

© Bias

 Variance

© Loss

© Risk

(p) [3 pts] Consider the bias-variance trade-off in fitting least-squares surfaces to two data sets. The first is US
census data, in which we want to estimate household income from the other variables. The second is synthetic
data we generated by writing a program that randomly creates samples from a known normal distribution, and
assigns them y-values on a known smooth surface y = f(x) plus noise drawn from a known normal distribution.
We can compute or estimate with high accuracy

© the bias component of the empirical risk for
the US census data.

© the variance component of the empirical risk
for the US census data.

 the bias component of the empirical risk for
the synthetic data.

 the variance component of the empirical risk
for the synthetic data.

(q) [3 pts] The kernel trick

© is necessary if we want to add polynomial fea-
tures to a learning algorithm.

© can be applied to any learning algorithm.

 can improve the speed of high-degree polyno-
mial regression.

© can improve the speed of learning algorithms
when the number of samples is very large.

(r) [3 pts] In the usual formulation of soft-margin SVMs, each training sample has a slack variable ξi ≥ 0 and
we impose a regularization cost C

∑
i ξi. Consider an alternative formulation where we impose the additional

constraints ξi = ξj for all i, j. How does the minimum objective value |w|2 + C
∑
i ξi obtained by the new

method compare to the one obtained by the original soft-margin SVM?

© They are always equal.

 New minimum ≥ original SVM minimum.

© Original SVM minimum ≥ new minimum.

© New minimum is sometimes larger and some-
times smaller.

(s) [3 pts] In Gaussian discriminant analysis, if two classes come from Gaussian distributions that have different
means, may or may not have different covariance matrices, and may or may not have different priors, which
decision boundary shapes are possible?

 a hyperplane

 a nonlinear quadric surface (quadric = the
isosurface of a quadratic function)

© a surface that is not a quadric

 the empty set (the classifier always returns
the same class)

(t) [3 pts] Let the class conditionals be given by P (X|Y = i) ∼ N (0,Σi), where i ∈ {0, 1} and Σ0 =

[
a 0
0 b

]
and Σ1 =

[
b 0
0 a

]
with a, b > 0, a 6= b. Both conditionals have mean zero, and both classes have the prior

probability P (Y = 0) = P (Y = 1) = 0.5. What is the shape of the decision boundary?

© a line

© a nonlinear quadratic curve

 multiple lines

© not defined

4



Q2. [15 pts] Quadratics and Gaussian Isocontours

(a) [4 pts] Write the 2× 2 matrix Σ whose unit eigenvectors are

[
1/
√

5

2/
√

5

]
with eigenvalue 1 and

[
−2/
√

5

1/
√

5

]
with

eigenvalue 4. Write out both the eigendecomposition of Σ and the final 2× 2 matrix Σ.

Σ =

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [
1 0
0 4

] [
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

]
=

[
17/5 −6/5
−6/5 8/5

]
.

(b) [3 pts] Write the symmetric square root Σ1/2 of Σ. (The eigendecomposition is optional, but it might earn you
partial credit if you get Σ1/2 wrong.)

Σ1/2 =

[
1/
√

5 −2/
√

5

2/
√

5 1/
√

5

] [
1 0
0 2

] [
1/
√

5 2/
√

5

−2/
√

5 1/
√

5

]
=

[
9/5 −2/5
−2/5 6/5

]
.

(c) [3 pts] Consider the bivariate Gaussian distribution X ∼ N (µ,Σ). Let P (X = x) be its probability distribution

function (PDF). Write the formula for the isocontour P (x) = e−
√
5/2/(4π), substitute in the value of the

determinant |Σ| from part (a) (but leave µ and Σ−1 as variables), and simplify the formula as much as you can.

1

2π
√
|Σ|

exp

(
− (x− µ)>Σ−1(x− µ)

2

)
=

e−
√
5/2

4π

(x− µ)>Σ−1(x− µ) =
√

5

(d) [5 pts] Draw the isocontour P (x) = e−
√
5/2/(4π) where µ =

[
0
2

]
and Σ is given in part (a).
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0
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Q3. [15 pts] Linear Regression
Recall that if we model our input data as linear plus Gaussian noise in the y-values, Y | x ∼ N (w>x, σ2), then the
maximum likelihood estimator is the w that minimizes the residual sum of squares

∑n
i=1(X>i w − yi)2, where the

training samples are X1, X2, . . . , Xn and their labels are y1, y2, . . . , yn.

Let’s model noise with a Laplace distribution instead of a normal distribution. The probability density function
(PDF) of Laplace(µ, b) is

P (y) =
1

2b
exp

(
−|y − µ|

b

)
.

(a) [6 pts] Show that if we model our input data as a line plus Laplacian noise in the y-values, i.e.

Y | x ∼ Laplace(w>x, b),

then the maximum likelihood estimator is the w that minimizes the sum of absolute residuals

n∑
i=1

|X>i w − yi|.

We wish to maximize the log-likelihood

ln

n∏
i=1

P (yi|Xi) =

n∑
i=1

ln

(
1

2b
e−|yi−X

>
i w|/b

)

= −1

b

n∑
i=1

|yi −X>i w| − n ln(2b),

which is equivalent to minimizing
∑n
i=1 |X>i w − yi|.

(b) [6 pts] Derive the batch gradient descent rule for minimizing the sum of absolute residuals. (Hint: You will
probably need “if” statements or equations with conditionals because of the absolute value operators in the
cost function. Don’t worry about points where the gradient is undefined.)

The batch gradient descent rule with learning rate ε:

w ← w − ε∇w

n∑
i=1

|X>i w − yi| = w + ε

n∑
i=1

{
−Xi, X>i w − yi > 0,
Xi, X>i w − yi < 0.

Alternatively, it can be written as pseducode:

for i→ 1 to n
if X>i w − yi > 0

w ← w − εXi

else
w ← w + εXi

Students can get partial credit by deriving (or coming close to) the stochastic gradient descent rule:

w ← w +

{
−εXi, X>i w − yi > 0,
εXi, X>i w − yi < 0.

(c) [3 pts] Why might we prefer to minimize the sum of absolute residuals instead of the residual sum of squares
for some data sets? (Hint: What is one of the flaws of least-squares regression?)

The sum of absolute residuals is less sensitive to outliers than the residual sum of squares.
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Q4. [10 pts] Discriminant Analysis
Let’s derive the decision boundary when one class is Gaussian and the other class is exponential. Our feature space
is one-dimensional (d = 1), so the decision boundary is a small set of points.

We have two classes, named N for normal and E for exponential. For the former class (Y = N), the prior probability

is πN = P (Y = N) =
√
2π

1+
√
2π

and the class conditional P (X|Y = N) has the normal distribution N (0, σ2). For the

latter, the prior probability is πE = P (Y = E) = 1
1+
√
2π

and the class conditional has the exponential distribution

P (X = x|Y = E) =

{
λe−λx if x ≥ 0,

0 if x < 0.

Write an equation in x for the decision boundary. (Only the positive solutions of your equation will be relevant;
ignore all x < 0.) Use the 0-1 loss function. Simplify the equation until it is quadratic in x. (You don’t need to solve
the quadratic equation. It should contain the constants σ and λ. Ignore the fact that 0 might or might not also be
a point in the decision boundary.) Show your work, starting from the posterior probabilities.

Ignoring the possibility of x = 0, the decision boundary is the set of positive solutions to

P (Y = N |X = x) = P (Y = E|X = x)

P (X = x|Y = N)P (Y = N)

P (X = x)
=

P (X = x|Y = E)P (Y = E)

P (X = x)

1√
2πσ

exp

(
− x2

2σ2

) √
2π

1 +
√

2π
= λe−λx

1

1 +
√

2π

− lnσ − x2

2σ2
= lnλ− λx

0 =
x2

2σ2
− λx+ lnλ+ lnσ.

Note that the last term can be abbreviated to ln(λσ). The last line above is not necessary for full credit; the second-
last line counts as a “quadratic equation.” The first line of math also is not necessary for full credit, but Bayes’
Theorem must implicitly be present.
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