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20 Unsupervised Learning and Principal Components Analysis

UNSUPERVISED LEARNING

We have sample points, but no labels!
No classes, no y-values, nothing to predict.
Goal: Discover structure in the data.

Examples:

— Clustering: partition data into groups of similar/nearby points.

— Dimensionality reduction: data often lies near a low-dimensional subspace (or manifold) in feature
space; matrices have low-rank approximations.
[Whereas clustering is about grouping similar sample points, dimensionality reduction is more about
identifying a continuous variation from sample point to sample point.]

— Density estimation: fit a continuous distribution to discrete data.
[When we use maximum likelihood estimation to fit Gaussians to sample points, that’s density esti-
mation, but we can also fit functions more complicated than Gaussians.]

PRINCIPAL COMPONENTS ANALYSIS (PCA) (Karl Pearson, 1901)

Goal: Given sample points in R?, find k directions that capture most of the variation. (Dimensionality
reduction.)
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3dpca.pdf | [Example of 3D points projected to 2D by PCA.]
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pcadigits.pdf | [The (high-dimensional) MNIST digits projected to 2D (from 784D). Two

dimensions aren’t enough to fully separate the digits, but observe that the digits 0 (red) and
1 (orange) are well on their way to being separated.]
Why?
— Find a small basis for representing variations in complex things, e.g., faces, genes.
— Reducing # of dimensions makes some computations cheaper, e.g., regression.
— Remove irrelevant dimensions to reduce overfitting in learning algs.
Like subset selection, but the “features” aren’t axis-aligned;
they’re linear combos of input features.

[Sometimes PCA is used as a preprocess before regression or classification for the last two reasons.]

Let X be n X d design matrix. [No fictitious dimension.]

From now on, assume X is centered: mean X; is zero.

[As usual, we can center the data by computing the mean x-value, then subtracting the mean from each
sample point.]

[Let’s start by seeing what happens if we pick just one principal direction.]
Let w be a unit vector.

The orthogonal projection of point x onto vector w is X = (x - w) w
W

If w not unit, X = e
X
w
o X

[The idea is that we’re going to pick the best direction w, then project all the data down onto w so we can
analyze it in a one-dimensional space. Of course, we lose a lot of information when we project down from
d dimensions to just one. So, suppose we pick several directions. Those directions span a subspace, and we
want to project points orthogonally onto the subspace. This is easy if the directions are orthogonal to each
other.]
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Given orthonormal directions vy,..., v, X = Zle(x V) Vi
[The word “orthonormal” implies they’re all mutually orthogonal and all have length 1.]

Often we want just the k principal coordinates x - v; in principal component space.

[Often we don’t actually want the projected point in R?.]

XTX is square, symmetric, positive semidefinite, d X d matrix. [As it’s symmetric, its eigenvalues are real.]
Let0 <A <4 <...< Ay be its eigenvalues. [sorted]

Let vy, vy,...,v4 be corresponding orthogonal unit eigenvectors. These are the principal components.

[. .. and the most important principal components will be the ones with the greatest eigenvalues. I will show
you this in three different ways.]

PCA derivation 1: Fit a Gaussian to data with maximum likelihood estimation.
Choose k Gaussian axes of greatest variance.
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gaussfitpca.png | [A Gaussian fitted to sample points.]
Recall that MLE estimates a covariance matrix & = %X TX. [Presuming X is centered.]
PCA Alg:
— Center X.

— Optional: Normalize X. Units of measurement different?
— Yes: Normalize.
[Bad for principal components to depend on arbitrary choice of scaling.]
— No: Usually don’t.
[If several features have the same unit of measurement, but some of them have smaller variance
than others, that difference is usually meaningful.]
— Compute unit eigenvectors/values of X X.
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— Optional: choose k based on the eigenvalue sizes.

— For the best k-dimensional subspace, pick eigenvectors vy_g+1,- - -, V4.

— Compute the principal coordinates x - v; of training/test data.
[When we do this projection, we have two choices: we can un-center the input training data before
projecting it, OR we can translate the test data by the same vector we used to translate the training
data when we centered it.]
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[Projection of 4D data onto a 2D subspace. Each point represents one
metropolitan area. Normalized data at left; unnormalized data at right. The arrows show
the four original axes projected on the two principal components. When the data are not
normalized, rare occurrences like murder have little influence on the principal directions.
Which is better? It depends on whether you think that low-frequency events like murder
and rape should have a disproportionate influence.]
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[Plot of # of eigenvectors vs. percentage of sample variance captured for a
17D data set. In this example, just 3 eigenvectors capture 70% of the variance.]

[If you are using PCA as a preprocess for a supervised learning algorithm, there’s a more effective way to
choose k: (cross-)validation.]
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PCA derivation 2: Find direction w that maximizes sample variance of projected data
[In other words, when we project the data down, we don’t want it all to bunch up; we want to keep it as
spread out as possible.]
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project.jpg | [Points projected on a line. We wish to choose the orientation of the green line
to maximize the sample variance of the blue points.]

. i 1< SO xXwlE 1 wTXTX
Find w that maximizes Var({X;, X, ..., X,}) = — Z (X,» . i) = —H W|2| =Y — lid
n G\l T T e T

Rayleigh quotient of XTX and w

[This fraction is a well-known construction called the Rayleigh quotient. When you see it, you should smell
eigenvectors nearby. How do we maximize this?]

If w is an eigenvector v;, Ray. quo. = 4;

— of all eigenvectors, v, achieves maximum variance Ag/n.

One can show v, beats every other vector too.

[Because every vector w is a linear combination of eigenvectors, and so its Rayleigh quotient will be a
convex combination of eigenvalues. It’s easy to prove this, but I don’t have the time. For the proof, look up
“Rayleigh quotient” in Wikipedia.]

[So the top eigenvector gives us the best direction. But we typically want k directions. After we’ve picked
one direction, then we have to pick a direction that’s orthogonal to the best direction. But subject to that
constraint, we again pick the direction that maximizes the sample variance.]

What if we constrain w to be orthogonal to v4? Then v,4_; is optimal.

[And if we need a third direction orthogonal to v; and v;_1, the optimal choice is v;—,. And so on.]
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PCA derivation 3: Find direction w that minimizes “projection error’”

PCAanimation.gif ‘ [This is an animated GIF; unfortunately, the animation doesn’t work in
the PDF lecture notes. Find the direction of the black line for which the sum of squares of
the lengths of the red lines is smallest.]

[You can think of this as a sort of least-squares linear regression, with one subtle but important change. In-
stead of measuring the error in a fixed vertical direction, we’re measuring the error in a direction orthogonal
to the principal component direction we choose.]
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projlsq.png, projpca.png | [Least-squares linear regression vs. PCA. In linear regression,
the projection direction 1s always vertical; whereas in PCA, the projection direction is or-
thogonal to the projection hyperplane. In both methods, however, we minimize the sum of
the squares of the projection distances.]

' o n ~ n X, - n 2
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constant — n (variance from derivation 2).

2

Minimizing projection error = maximizing variance.
[From this point, we carry on with the same reasoning as derivation 2.]
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Eigenvector 2
europegenetics.pdf (Lao et al., Current Biology, 2008.) | [Illustration of the first two prin-
cipal components of the single nucleotide polymorphism (SNP) matrix for the genes of var-
ious Europeans. The input matrix has 2,541 people from these locations in Europe (right),
and 309,790 SNPs. Each SNP is binary, so think of it as 309,790 dimensions of zero or one.
The output (left) shows spots on the first two principal components where there was a high
density of projected people from a particular national type. What’s amazing about this is
how closely the projected genotypes resemble the geography of Europe.]
Eigenfaces

X contains n images of faces, d pixels each.
[If we have a 200 x 200 image of a face, we represent it as a vector of length 40,000, the same way we
represent the MNIST digit data.]
Face recognition: Given a query face, compare it to all training faces; find nearest neighbor in R,
[This works best if you have several training photos of each person you want to recognize, with different
lighting and different facial expressions.]
Problem: Each query takes ®(nd) time.
Solution: Run PCA on faces. Reduce to much smaller dimension d’.
Now nearest neighbor takes O(nd”) time.
[Possibly even less. We’ll talk about speeding up nearest-neighbor search at the end of the
semester. If the dimension is small enough, you can sometimes do better than linear time.]

[If you have 500 stored faces with 40,000 pixels each, and you reduce them to 40 principal components,
then each query face requires you to read 20,000 stored principal coordinates instead of 20 million pixels. ]
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facerecaverage.jpg, facereceigenO0.jpg, facereceigen119.jpg, facereceigen.jpg | [Images of
the the eigenfaces. The “average face” is the mean used to center the data.]

E=4

E=50

eigenfaceproject.pdf| [Images of a face (left) projected onto the first 4 and 50 eigenvectors, with
the average face added back. These last image is blurry but good enough for face recognition.]
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For best results, equalize the intensity distributions first.

facerecequalize.jpg | [Image equalization.]

[Eigenfaces are not perfect. They encode both face shape and lighting. Ideally, we would have some
way to factor out lighting and analyze face shape only, but that’s harder. Some people say that the first 3
eigenfaces are usually all about lighting, and you sometimes get better facial recognition by dropping the
first 3 eigenfaces.]

[Show Blanz—Vetter face morphing video (morphmod.mpg).]

[Blanz and Vetter use PCA in a more sophisticated way for 3D face modeling. They take 3D scans of
people’s faces and find correspondences between peoples’ faces and an idealized model. For instance, they
identify the tip of your nose, the corners of your mouth, and other facial features, which is something the
original eigenface work did not do. Instead of feeding an array of pixels into PCA, they feed the 3D locations
of various points on your face into PCA. This works more reliably.]



